检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
snt9b,显存规格建议选择64G以上的规格,磁盘规格建议选择500GB及以上。 创建完Notebook后,待Notebook状态变为“运行中”时,打开Notebook,可参考后续章节在Notebook调试环境中部署推理服务。 父主题: 准备工作
snt9b,显存规格建议选择64G以上的规格,磁盘规格建议选择500GB及以上。 创建完Notebook后,待Notebook状态变为“运行中”时,打开Notebook,可参考后续章节在Notebook调试环境中部署推理服务。 父主题: 准备工作
Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_sdxl_finetune_train.sh 训练执行脚本中配置了保存checkpoint的频率,每500steps保存一次,如果磁盘空间较小,这个值可以改大到5000,避免磁盘空间写满,导致训练失败终止。
snt9b,显存规格建议选择64G以上的规格,磁盘规格建议选择500GB及以上。 创建完Notebook后,待Notebook状态变为“运行中”时,打开Notebook,可参考后续章节在Notebook调试环境中部署推理服务。 父主题: 准备工作
以适当在解压大量文件时,加入sleep。比如每解压1w个文件,就停止1s。 存储限制 根据规格情况合理使用数据盘,数据盘大小请参考训练环境中不同规格资源大小。 CPU过载 减少线程数。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查: 线上环境调试代码(仅适用于非分布式代码)
得更加高效和便捷,为用户带来了极大的便利和性能提升。Ascend-vLLM可广泛应用于各种大模型推理任务,特别是在需要高性能和高效率的场景中,如自然语言处理、图像生成和语音识别等。 Ascend-vLLM的主要特点 易用性:Ascend-vLLM简化了在大模型上的部署和推理过程,使开发者可以更轻松地使用它。
必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接
1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 通过命令npu-smi info查询NPU卡为容器中的第几张卡。例如下图查询出两张卡,若希望使用第一和第二张卡,则“export ASCEND_RT_VISIBLE_DEVICES=0,1”,注意编号不是填4、5。
1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 通过命令npu-smi info查询NPU卡为容器中的第几张卡。例如下图查询出两张卡,如果希望使用第一和第二张卡,则“export ASCEND_RT_VISIBLE_DEVICES=0,1”,注意编号不是填4、5。
化稀疏剪枝、非结构化稀疏剪枝。 FASP剪枝 FASP剪枝是一种结构化稀疏剪枝方法,能有效降低模型显存以及需要部署的资源依赖,减小推理过程中的计算量,降低增量推理时延,提升吞吐。 FASP (Fast and Accurate Structured Pruning) 一种针对LL
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl
运行结果将存储在output文件夹中,如果用户指定了output_path,会指定位置保存,如果不指定则在当前代码执行目录生成文件夹保存输出。整体运行的结果都存放在output文件夹中,每转一次模型就会根据模型名称以及相关参数生成结果文件,如下图所示。 图3 output文件 在每次运行的结果文件中,分为三
distributed.barrier() 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接
训练完成后,请参考查看日志和性能章节查看指令微调的日志和性能。 1、如训练过程中遇到“NPU out of memory”“Permission denied” 问题可参考 附录:训练常见问题解决。 2、训练中遇到"ImportError: This modeling file requires
evaluation/mme_eval/data/eval/目录中。 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation/mme_eval目录中,代码目录结构如下。 mme_eval ├──metric.py
logging_steps 2 用于指定模型训练过程中,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 max_steps 5000 非必填。表示训练step迭代次数。会自动计算得出。 save_steps 5000 指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练。
llReduce、AllGather等,利用这一特性,工具将多机模型训练中产生的通信输出存盘,并传输到同一节点来比较其一致性,从而确定模型中通信算子的精度是否存在问题。若已排除通信算子异常,则可能是由于网络层数增加放大了累积误差,需要使用精度比对等工具进一步分析。 图1 精度调优流程
3567:用户只能访问自己账号下的obs目录,ModelArts在读取其他用户obs下的数据时,需要用户委托权限,没有创建委托,就没有权限使用其他用户obs中的数据。 登录ModelArts控制台,管理控制台,在左侧导航栏中选择“权限管理”,单击“查看权限”,检查是否配置了obs的委托权限。 图1
File('obs://bucket_name/obs_file.txt', 'r') as f: file_str = f.read() 从文件中读取一行,返回string,以换行符结尾。同样可以打开OBS的文件对象。 1 2 3 import moxing as mox with mox