检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练作业运行失败 训练作业运行失败排查指导 训练作业运行失败,出现NCCL报错 自定义镜像训练作业失败定位思路 使用自定义镜像创建的训练作业一直处于运行中 使用自定义镜像创建训练作业找不到启动文件 训练作业的监控内存指标持续升高直至作业失败 订阅算法物体检测YOLOv3_ResNet18(As
Turbo文件系统进行数据挂载,训练作业产生的中间和结果等数据可以直接高速写入到SFS Turbo缓存中,并可被下游业务环节继续读取并处理,结果数据可以异步方式导出到关联的OBS对象存储中进行长期低成本存储,从而加速训练场景下加速OBS对象存储中的数据访问 ModelArts Standard模型训练提供便捷的作业管理能力,提升用户模型训练的开发效率
置错误。当用户的NCCL版本低于2.14时,则需要手动设置NCCL_SOCKET_IFNAME环境变量。 处理方法 针对原因1,需要在代码中补充如下环境变量。 import os os.environ["NCCL_IB_TC"] = "128" os.environ["NCCL_IB_GID_INDEX"]
用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是i
${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/
本案例需要创建一个Notebook,以便能够通过它访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。
软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6.3.908软件包中的AscendCloud-AIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step4 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,切换一个conda环境。
通过下述地址直接下载HuggingFace社区中开发者贡献的已经转换成功的BF16权重。建议在Server机器上创建${path-to-file}/deepseekV3-bf16或${path-to-file}/deepseekR1-bf16目录,并直接将权重文件下载到该目录中。 opensource
用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是i
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤三:上传代码包和权重文件中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。
目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。
训练完成后,请参考查看日志和性能章节查看指令微调的日志和性能。 1、如训练过程中遇到“NPU out of memory”“Permission denied” 问题可参考 附录:指令微调训练常见问题解决 2、训练中遇到"ImportError: This modeling file requires
当前任务是否是该版本的同类型任务中的最新任务。 name String 数据处理任务名称。 result Object 数据处理任务输出的结果,status为2时会出现该字段,用于特征分析任务。 status Integer 数据处理的状态。可选值如下: 0:初始化 1:运行中 2:已完成 3:失败
Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“图像分类”AI模型的训练和部署。 面向AI开发零基础的用户 使用Standard自动学习实现口罩检测 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让
float32) # 保存网络输入为二进制文件 image.tofile("input_data.bin") 将基准模型的输出保存到文本文件。 本例中输出节点名称为output_node_name,输出节点的shape为“(1, 1000)”,因此一共有两维,对应的输出文件为“output_node_name
runtime没有找到。 处理方法 建议您按以下步骤排查处理: 确认部署在线服务时是否选择了GPU规格。 在customize_service.py中添加一行代码os.system('nvcc -V)查看该镜像的cuda版本(customize_service.py编写指导请见模型推理代码编写说明)。
建议先将Tensorboard文件写到本地,然后再复制回OBS。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接
删除Notebook实例 通过运行的实例保存成容器镜像 查询Notebook支持的有效规格列表 查询Notebook支持的可切换规格列表 查询运行中的Notebook可用时长 Notebook时长续约 启动Notebook实例 停止Notebook实例 获取动态挂载OBS实例信息列表 动态挂载OBS
base替换为实际使用的python环境 pip show ipykernel 对应conda环境没有ipykernel,直接在Notebook中添加自定义IPython Kernel安装。 父主题: 自定义镜像故障