检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常? 自动学习使用子账号单击开始训练出现错误Modelarts.0010 自动学习中偏好设置的各参数训练速度大概是多少 自动学习声音分类预测报错ERROR:input key sound is not in model 父主题:
Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 examples/fp8/extract_scales.py \ --quantized_model
23:47:16.854775807,需注意上下界限。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接
ata_pre_proc=false) 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接
用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是i
使用Opencompass精度测评工具 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。目前使用的opencompass版本是0.2.6 benchmark_eval ├──opencompass.sh
训练完成后,请参考查看日志和性能章节查看指令微调的日志和性能。 1、如训练过程中遇到“NPU out of memory”“Permission denied” 问题可参考 附录:指令微调训练常见问题解决 2、训练中遇到"ImportError: This modeling file requires
Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 examples/fp8/extract_scales.py \ --quantized_model
Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 examples/fp8/extract_scales.py \ --quantized_model
root@{container_id}:/# squid -k reconfigure 算法镜像:设置DNS代理和公网地址调用 设置代理 在代码中设置代理指向代理服务器私有IP和端口,如下所示: proxies = { "http": "http://{proxy_server_private_ip}:3128"
Protocol)的网络诊断工具,利用ICMP协议向目标主机发送数据包并接收返回的数据包来判断网络连接质量。当安全组的入方向规则中没有包含ICMP协议,就会出现ping不通的问题。 处理方法 在当前安全组的入方向规则中添加一条规则,基本协议选择ICMP协议,详细配置如下表所示,添加规则步骤请参考添加安全组规则。 表1
Tensorflow分布式有多种执行模式,mox会通过4次执行50 step记录执行时间,选择执行时间最少的模型。 处理方法 创建训练作业时,在“运行参数”中增加参数“variable_update=parameter_server”来关闭Mox的warmup。 父主题: MoXing
Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 examples/fp8/extract_scales.py \ --quantized_model
base替换为实际使用的python环境 pip show ipykernel 对应conda环境没有ipykernel,直接在Notebook中添加自定义IPython Kernel安装。 父主题: 自定义镜像故障
3, 1, 2).contigous() 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接
Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“图像分类”AI模型的训练和部署。 面向AI开发零基础的用户 使用Standard自动学习实现口罩检测 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让
软件配套版本 表1 获取软件 分类 名称 获取路径 插件代码包 AscendCloud-6.3.909软件包中的AscendCloud-AIGC-6.3.909-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软
文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程中,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 5000 指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务 plot_loss
--inputShape="input_ids:1,77" 在配置文件中指定输入shape。 配置文件中通过“[ascend_context]”配置项指定input_shape,格式与命令行一致,多个输入,需要使用“;”隔开;然后在命令行中通过--configFile指定对应的配置文件路径即可。 # text_encoder
模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.906-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 Ascend