检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为什么空间详情中“作业执行统计”实例数与空间作业中实例数统计不一致? 空间作业中的实例数统计的是实例总个数,而空间详情中“作业执行统计”实例数统计全部实例的总执行次数,可能存在一个实例执行多轮的情况。所以两个实例数统计不一致也是很正常的。
状态代码由三位数字组成,第一个数字定义了响应的类别,有五种可能取值: 1xx:指示信息,表示请求已接收,继续处理。 2xx:成功,表示请求已被成功接收、理解、接受。 3xx:重定向,要完成请求必须进行更进一步的操作。 4xx:客户端错误,请求有语法错误或请求无法实现。 5xx:服务器端错误,服务器未能实现合法的请求。
访问截止时间:设置访问的时间限制,超过访问时间后,对方的访问权限将被收回,交换至对方的加密文件将被删除。 访问方式:基于TICS平台进行下载。 访问次数:用户可以访问次数的最大限制;超过访问次数,用户将无法访问作业文件。如果不填写,用户在访问截至时间前无限次访问。 图2 设置使用的字段及访问的需求 单击保存或者保存并提交审批。
用户自定义模型,样例请参考准备本地横向联邦数据资源中步骤3。 初始权重参数 模型的初始权重,样例请参考准备本地横向联邦数据资源中步骤3。 迭代次数 即epoch,数据将会被执行的次数。评估型作业的迭代次数固定为1。 训练轮数 训练的轮数,每一轮训练结束都会对各方训练出的权重进行一次安全聚合,评估型作业的轮数固定为1。
2、数据信息:主要描述结构化数据的列信息,包含数据名称、创建人、创建时间描述等信息。 3、访问需求:主要描述数据用方的需求,包含访问截止时间、访问方式、访问次数。 4、访问限制:暂不支持。 5、自定义限制:自定义策略支持“<”、“>”和“=”。 供数方可以设置自定义属性来进一步强化数据访问控制。 图2
2、数据信息:主要描述结构化数据的列信息,包含数据名称、创建人、创建时间描述等信息。 3、访问需求:主要描述数据用方的需求,包含访问截止时间、访问方式、访问次数。 4、访问限制:暂不支持。 5、自定义限制:自定义策略支持“<”、“>”和“=”。 供数方可以设置自定义属性来进一步强化数据访问控制。 图2
用户自定义模型,样例请参考准备本地横向联邦数据资源中步骤3。 初始权重参数 评估时必填,训练时可选,样例请参考准备本地横向联邦数据资源中步骤3。 迭代次数 即epoch,数据迭代计算的次数。 训练轮数 训练的轮数,每一轮训练结束都会对各方训练出的权重进行一次安全聚合。 重试 开关开启后,执行失败的作业会根据配
区分正负例的得分阈值。 逻辑回归/FiBiNET 学习率 控制权重更新的幅度,影响训练收敛速度和模型精度,取值范围为0~1。 迭代次数 完成全部样本训练的次数,取值为正整数。 批大小 单次训练使用的样本数,取值为正整数。 分类阈值 区分正负例的得分阈值 自定义配置: 通过json格式
信数据覆盖率有限,不良企业多家骗贷事件屡有发生。金融机构与政府部门,如税务部门、市场监管部门、水电公司等在保护各方原始数据隐私的前提下,通过多方联合建模,金融机构补充了风控模型特征维度,提升模型准确率。 优势: 提升模型准确率 多方机构实现算法层面联合建模,提升了需求方模型的预测效果。
在申请使用界面配置使用字段及用数方的访问需求。 图2 设置使用的字段及访问的需求 支持选择访问截止时间、访问方式、访问次数。 不设置访问次数时,则不限制访问次数。 单击保存或者保存并提交审批。 在“可信数据交换 > 数据申请 > 我创建的”的页签下可以查看、编辑、删除已创建的申请。
区分正负例的得分阈值。 逻辑回归/FiBiNET 学习率 控制权重更新的幅度,影响训练收敛速度和模型精度,取值范围为0~1。 迭代次数 完成全部样本训练的次数,取值为正整数。 批大小 单次训练使用的样本数,取值为正整数。 分类阈值 区分正负例的得分阈值 自定义配置: 通过json格式
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
否 Float 学习率,最小值0,最大值1 batch_size 否 Integer 批大小,最小值1 epoch 否 Integer 迭代次数,最小值1 tree_num 否 Integer 树数量,最小值1 tree_depth 否 Integer 树深度,最小值1 split_num
job_ins_cnt Long 作业实例次数 job_ins_fail_cnt Long 作业实例失败次数 job_ins_intercept_cnt Long 作业实例拦截次数 job_ins_success_cnt Long 作业实例成功次数 状态码: 401 表5 响应Body参数
否 Float 学习率,最小值0,最大值1 batch_size 否 Integer 批大小,最小值1 epoch 否 Integer 迭代次数,最小值1 tree_num 否 Integer 树数量,最小值1 tree_depth 否 Integer 树深度,最小值1 split_num
本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20) 训练轮数 1 10 20 测试集准确率
表5 LeaguePartnerStatisticsVo 参数 参数类型 描述 partner_access_cnt Long 合作方访问次数 partner_domain_alias String 租户别名 partner_domain_name String 租户名 partner_job_cnt
String 数据集id dataset_intercept_cnt Long 数据集拦截次数 dataset_name String 数据集名称 dataset_use_cnt Long 数据集使用次数 状态码: 401 表6 响应Body参数 参数 参数类型 描述 error_code