检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46.6)/47*100=0.85%)认为NPU精度和GPU对齐。 父主题: 主流开源大模型基于Standard适配PyTorch
main/ShareGPT_V3_unfiltered_cleaned_split.json Alpaca下载地址: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 方法二:使用generate_dataset
注意:Qwen2-VL 开源vllm依赖特定transformers版本, 请手动安装: pip install git+https://github.com/huggingface/transformers.git@21fac7abba2a37fae86106f87fcf9974fd1e3830
npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1以内(计算公式:(47-46.6) < 1)认为NPU精度和GPU对齐。NPU和GPU的评分结果和社区的评分不能差太远(小于10)认为分数有效。
npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46.6)/47*100=0.85%)认为NPU精度和GPU对齐。 父主题: 主流开源大模型基于Standard适配PyTorch
main/ShareGPT_V3_unfiltered_cleaned_split.json Alpaca下载地址: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 方法二:使用generate_dataset
模型精度问题。 export EAGLE_USE_SAFE_AI_LAB_STYLE=1 # eagle投机对基于 https://github.com/SafeAILab/EAGLE/ 版本实现 如果需要使用eagle投机推理功能,需要进入 lm_tools/spec_decode/EAGLE
模型精度问题。 export EAGLE_USE_SAFE_AI_LAB_STYLE=1 # eagle投机对基于 https://github.com/SafeAILab/EAGLE/ 版本实现 如果需要使用eagle投机推理功能,需要进入 lm_tools/spec_dec
lve/main/ShareGPT_V3_unfiltered_cleaned_split.json Alpaca: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 使用generate_dataset
lve/main/ShareGPT_V3_unfiltered_cleaned_split.json Alpaca: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 使用generate_dataset
在context文件夹内新建名为Dockerfile的空文件,并将下述内容写入其中。 # 容器镜像构建主机需要连通公网 # 基础容器镜像, https://github.com/NVIDIA/nvidia-docker/wiki/CUDA # # https://docs.docker.com/dev
功能总览 功能总览 全部 自动学习 Workflow 开发工具 算法管理 训练管理 AI应用管理 部署上线 镜像管理 资源池 AI Gallery ModelArts SDK 昇腾生态 自动学习 自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。自动学习
在context文件夹内新建名为Dockerfile的空文件,并将下述内容写入其中。 # 容器镜像构建主机需要连通公网 # 基础容器镜像, https://github.com/NVIDIA/nvidia-docker/wiki/CUDA # # https://docs.docker.com/de
在context文件夹内新建名为Dockerfile的空文件,并将下述内容写入其中。 # 容器镜像构建主机需要连通公网 # 基础容器镜像, https://github.com/NVIDIA/nvidia-docker/wiki/CUDA # # https://docs.docker.com/de
增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的
查询模型列表 示例代码 在ModelArts Notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景1:查询当前用户所有模型 1 2 3 4 5 6 from modelarts.session import Session
Invalid labels({0}) of model. 模型标签({0})不合法. 模型标签含有特殊字符,当前只支持大小写字母或中文字符开头,包含大小写字母,数字,中文字符和下划线,最大长度不超过64。 400 ModelArts.3024 The templateInputs field
到OBS。 上传算法到SFS 下载Swin-Transformer代码。 git clone --recursive https://github.com/microsoft/Swin-Transformer.git 修改lr_scheduler.py文件,把第27行:t_mul=1
使用AI Gallery SDK构建自定义模型 AI Gallery的Transformers库支持部分开源的模型结构框架,并对昇腾系列显卡进行了训练/推理性能优化,可以做到开箱即用。如果你有自己从头进行预训练的模型,AI Gallery也支持使用SDK构建自定义模型接入AI Gallery。
模型精度问题。 export EAGLE_USE_SAFE_AI_LAB_STYLE=1 # eagle投机对基于 https://github.com/SafeAILab/EAGLE/ 版本实现 export ENABLE_SPEC_METRIC=0 # 是否关闭投机推理的