检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
者提供免费分享和灵活使用Notebook代码样例的功能。您可以将优秀的Notebook代码样例发布在AI Gallery社区,供其他开发者学习使用;也可以在AI Gallery上查看其他人共享的Notebook案例的详细描述、代码信息等,通过“Run in ModelArts”将
modeling_chatglm.py修改 再次dump对比精度,发现该算子精度问题得到解决。 图19 Tensor_permute_0精度对比 图20 算子精度对比 修改上述问题之后,重新对比精度数据后发现,重新进行训练任务,通过对比NPU和GPU的loss曲线,可以发现,两者的下降趋势几乎是一致的。
1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容 202:语音分割 600:视频标注 表7 SearchProp 参数 参数类型 描述 op String 多个属性值之间的关系。可选值如下:
1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容 202:语音分割 600:视频标注 表8 LabelAttribute 参数 是否必选 参数类型 描述 default_value 否
1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容 202:语音分割 600:视频标注 表7 LabelAttribute 参数 是否必选 参数类型 描述 default_value 否
模型运行时环境。 model_metrics String 模型精度信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 model_type String 模型类型,取值为TensorFlow/Image/PyTorch/Template/MindSpore。
UTC'的毫秒数。 description String 模型描述信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为“auto”。 父主题: 模型管理
安全可信,基于安全加固最佳实践,访问策略、用户权限划分、开发软件漏洞扫描、操作系统安全加固等方式,确保镜像使用的安全性。 ModelArts的自定义镜像使用场景 当用户对深度学习引擎、开发库有特殊需求场景的时候,预置镜像已经不能满足用户需求。ModelArts提供自定义镜像功能支持用户自定义运行引擎。 Model
1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容 202:语音分割 600:视频标注 表9 SearchProp 参数 参数类型 描述 op String 多个属性值之间的关系。可选值如下:
性能调优 Profiling数据采集 使用Advisor工具分析生成调优建议 调优前后性能对比 父主题: Dit模型Pytorch迁移与精度性能调优
&& git clone https://github.com/Stability-AI/generative-models.git -c http.sslVerify=false \ && git clone https://github.com/Stability-AI/k-diffusion
1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容 202:语音分割 600:视频标注 表4 LabelAttribute 参数 参数类型 描述 default_value String
default="0.002", description="训练的学习率策略(10:0.001,20:0.0001代表0-10个epoch学习率0.001,10-20epoch学习率0.0001),如果不指定epoch, 会根据验证精度情况自动调整学习率,并当精度没有明显提升时,训练停止")),
上传文件至JupyterLab 上传本地文件至JupyterLab 克隆GitHub开源仓库文件到JupyterLab 上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
的。 code_type:预训练json文件编码 默认utf-8 当转换为share gpt格式时,prefix和 input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集
的。 code_type:预训练json文件编码 默认utf-8 当转换为share gpt格式时,prefix和 input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集
model_path) 初始化方法,适用于深度学习框架模型。该方法内加载模型及标签等(pytorch和caffe类型模型必须重写,实现模型加载逻辑)。 __init__(self, model_path) 初始化方法,适用于机器学习框架模型。该方法内初始化模型的路径(self.
的。 code_type:预训练json文件编码 默认utf-8 当转换为share gpt格式时,prefix和 input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集
据,您可以根据呈现的图表了解数据分布情况,帮助您更好的理解您的数据。 “版本选择”:根据实际情况选择已执行过特征任务的版本,可以选多个进行对比,也可以只选择一个。 “类型”:根据需要分析的类型选择。支持“all”、“train”、“eval”和“inference”。分别表示所有、训练、评估和推理类型。
开发环境的Notebook实例 exemlProject 自动学习项目 exemlProjectInf 自动学习项目的在线推理服务 exemlProjectTrain 自动学习项目的训练作业 exemlProjectVersion 自动学习项目的版本 workflow Workflow项目 pool