检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint.py存放在T
Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint.py存放在T
per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint.py存放在T
描述 model_algorithm 是 String 模型算法,表示该模型的用途,由模型开发者填写,以便使用者理解该模型的用途。只能以英文字母开头,不能包含中文以及&!'\"<>=,不超过36个字符。常见的模型算法有image_classification(图像分类)、obje
0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tr
0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tr
Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint.py存放在T
0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tr
确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at Evaluation)。
Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint.py存放在T
产品定位 使用场景 文档链接 ModelArts Standard 面向AI开发者的一站式开发平台, 提供了简洁易用的管理控制台,包含自动学习、数据管理、开发环境、模型训练、模型管理、部署上线等端到端的AI开发工具链,实现AI全流程生命周期管理。 面向有AI开发平台诉求的用户。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at Evaluation)。
了多种文件上传方式,在文件上传过程中,可以查看上传进度和速度。 将本地文件上传,请参考支持上传本地文件; GitHub的开源仓库的文件上传,请参考支持Clone GitHub开源仓库; 存放在OBS中的文件上传,请参考支持上传OBS文件; 类似开源数据集这样的远端文件上传,请参考支持上传远端文件;
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
通过设定ASCEND_RT_VISIBLE_DEVICES环境变量为0,控制0号卡对当前进程可见,PRE_SEQ_LEN和LR分别是soft prompt长度和训练的学习率,可以进行调节以取得最佳的效果。此外,这里去掉了int 4量化默认为FP16精度。${HOME} 目录需要根据读者实际数据集及模型路径匹
source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 model_id String 模型id。 model_source String 模型来源。auto:自动学习;algos:预置算法;custom:自定义。 install_type
1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容 202:语音分割 600:视频标注 表6 LabelAttribute 参数 参数类型 描述 default_value String
Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint.py存放在T