检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
最小值:1 pool_id String 训练作业选择的资源池ID。 flavor_detail flavor_detail object 训练作业、算法的规格信息。 表45 flavor_detail 参数 参数类型 描述 flavor_type String 资源规格的类型。
train_instance_type 是 String 训练作业选择的资源规格,请参考查询资源规格列表 train_instance_count 是 int 训练作业计算节点个数。
表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。
表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。
表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。
表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。
模型训练新建模型训练工程的时候,选择通用算法有什么作用? 通用算法目前包括:分类算法、拟合算法、聚类算法、其他类型。用户选择不同的通用算法类型,并勾选“创建入门模型训练代码”,便可以自动生成对应类型的代码模版。 父主题: 模型训练
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。
训练模型 图1 模型训练 在“模型训练”页面,勾选模型训练所使用的“预训练模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。
查询训练作业版本详情 功能介绍 根据作业ID查看指定的训练作业详情。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions/{version_id} 参数说明如表1所示。
模型训练 模型训练简介 创建模型训练工程 创建联邦学习工程 创建训练服务 创建超参优化服务 创建Tensorboard 打包训练模型 父主题: 用户指南
compute_environment: LOCAL_MACHINE debug: false distributed_type: MULTI_NPU downcast_bf16: 'no' gpu_ids: all machine_rank: 0 main_training_function
使用预置算法训练时,训练失败,报“bndbox”错误 问题现象 使用预置算法创建训练作业,训练失败,日志中出现如下报错。 KeyError: 'bndbox' 原因分析 用于训练的数据集中,使用了“非矩形框”标注。而预置使用算法不支持“非矩形框”标注的数据集。
sh diffusers_lora_train.sh 启动SDXL LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_sdxl_lora_train.sh 训练执行成功如下图所示。
cd /home/ma-user/diffusers sh diffusers_controlnet_train.sh Step3 启动sdxl训练服务 使用ma-user用户执行如下命令运行训练脚本。
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。修改数据集路径、模型路径。脚本里写到datasets路径即可。
训练模型时引用依赖包,如何创建训练作业? ModelArts支持训练模型过程中安装第三方依赖包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。
sh diffusers_lora_train.sh 启动SDXL LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_sdxl_lora_train.sh 训练执行成功如下图所示。
启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_finetune_train.sh 启动SDXL Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。
在“训练作业”列表中,单击作业名称,进入训练作业详情页。 在训练作业详情页的左侧,可以查看此次训练作业的基本信息和算法配置的相关信息。 训练作业基本信息 表1 训练作业基本信息 参数 说明 “作业ID” 训练作业唯一标识。 “作业状态” 训练作业状态。