检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
vscode-server-linux-x64.tar.gz -C /home/ma-user/.vscode-server/bin/$commitId --strip=1 chmod 750 -R /home/ma-user/.vscode-server/bin/$commitId 关闭VS Code,
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
/home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps
EVS的更多信息请参见《云硬盘用户指南》。 与云容器引擎的关系 ModelArts使用云容器引擎(Cloud Container Engine,简称CCE)部署模型为在线服务,支持服务的高并发和弹性伸缩需求。CCE的更多信息请参见《云容器引擎用户指南》。 与容器镜像服务的关系
ModelArts计费模式概述 ModelArts服务提供包年/包月和按需计费两种计费模式,以满足不同场景下的用户需求。如您需要快速了解ModelArts服务不同计费模式的具体价格,请参见ModelArts价格详情。 包年/包月:一种预付费模式,即先付费再使用,按照订单的购买周期
ModelArts训练中不同规格资源“/cache”目录的大小是多少? 在创建训练作业时可以根据训练作业的大小选择资源。 ModelArts会挂载硬盘至“/cache”目录,用户可以使用此目录来储存临时文件。“/cache”与代码目录共用资源,不同资源规格有不同的容量。 k8s磁盘的驱逐策略是90%,所以可以正常使用的磁盘大小应该是“cache目录容量
ModelArts控制台为什么能看到创建失败被删除的专属资源池? 在控制台页面操作删除专属资源池后,后端服务需要进行资源实例释放。在资源实例释放过程中,用户依然可以查询到资源池。如果需要创建专属资源池,建议等待5min后再创建,且不要使用已创建过的专属资源池名称来命名新建的专属资源池。如果做UI自动化测试,建议用例用随机串替代。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
使用率)。 原因分析 原因是集群没有安装ICAgent。新建特权池时默认会安装ICAgent,可能由于用户自行卸载ICAgent,导致资源池数据显示异常。 处理方法 登录“应用运维管理”控制台,在“配置管理 > Agent管理”中,选择未安装ICAgent的集群,并单击“安装ICAgent”。
PyTorch大模型训练的精度问题的分析、定位可以参考如下思路: 大模型训练通常使用多机训练,鉴于多机训练复现问题的成本较高,且影响因子较多,建议用户先减少模型层数,使模型能够单机训练,确认单机训练是否也存在精度问题,若存在,则使用下述手段定位精度问题,使得单机精度达标,然后再恢复层数拉起多机训练。
Cache都可以缓存,在多轮对话的应用中,忽略边界情况,基本上可以认为其消除了历史轮次中生成对话的recompute。 Ascend vllm提供prefix caching关键特性能力,能够显著降低长system prompt和多轮对话场景首token时延,提升用户体验。其优势主要包括:
/home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps
lm-evaluation-harness git checkout 383bbd54bc621086e05aa1b030d8d4d5635b25e6 pip install -e . 执行如下精度测试命令,可以根据参数说明修改参数。 lm_eval --model vllm --model_args
lm-evaluation-harness git checkout 383bbd54bc621086e05aa1b030d8d4d5635b25e6 pip install -e . 执行如下精度测试命令,可以根据参数说明修改参数。 lm_eval --model vllm --model_args
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut