检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
计算节点支持生命周期管理 新增计算节点上下线功能;支持计算节点规格变更,卸载等操作。 公测 切换计算节点状态 2 连接器支持生命周期管理 新增连接器状态显示,新增重启等操作。 公测 管理连接器
述,邀请参与方加入空间链。 参与方登录区块链服务(BCS)按照组建联盟链中“同意/拒绝邀请”部分的描述,创建BCS实例并加入空间链。 发起方、参与方各自根据合约仓库章节中下载模板的描述,下载“数据上链存证和查询合约模板(又称链代码)”并保存到本地。 发起方、参与方各自按照链代码管
创建数据预处理作业 用户登录TICS控制台。 进入TICS控制台后,单击页面左侧“计算节点管理”,进入计算节点管理页面。 在“计算节点管理”页面,查找需要发布数据的计算节点名称,单击“计算节点名称”进入计算节点详情页。 图2 选择计算节点 在“计算节点详情”页,单击“前往计算节点”,在登录页正确输
算。同时,也隔离了不同空间之间的数据访问。 合作方登录TICS控制台。进入TICS控制台后,单击页面左侧“通知管理”,进入通知管理页面。 浏览通知信息,单击“下载计算节点配置”,得到agentConfig.zip文件,解压到本地。 图1 下载计算节点配置 父主题: 快速入门
训练数据预处理作业 用户登录TICS控制台。 进入TICS控制台后,单击页面左侧“计算节点管理”,进入计算节点管理页面。 在“计算节点管理”页面,查找需要发布数据的计算节点名称,单击“计算节点名称”进入计算节点详情页。 图1 选择计算节点 在“计算节点详情”页,单击“前往计算节点”,在登录页正确输
应库表的访问权限。 如果要创建MRS安全集群的数据连接,不能使用admin用户。因为admin用户是默认的管理页面用户,这个用户无法作为安全集群的认证用户来使用。您可以参考以下步骤创建一个新的MRS用户: 使用admin账号登录MRS Manager页面。 单击“系统 > 权限 >
的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图,提供插件化的区块链对接存储,实现使用过程的可审计、可追溯。
可信计算节点发生主备切换,原节点登录地址不可用,如何处理? 若可信节点因为节点故障等原因产生了主备切换的操作,会导致原先可信节点控制台登录地址改变。此时需重新登录TICS管理台,单击前往计算节点,登录最新的节点控制台。 图1 登录最新的节点控制台 原先的可信节点控制台登录后右上角会显示不互信。
创建训练模型时参数必须有"save_format": "SAVED_MODEL"。 创建联邦预测作业 实时预测作业在本地运行,目前仅支持深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面,选择实时预测的Tab页,单击创建。
String 连接器id。 支持数字,英文字母,下划线,长度0-32 connector_name String 连接器名称。 支持英文字母,数字,下划线,特殊符号,只能以英文字母开头,特殊符号不包括?!.*?_$ 长度0-128 data_type String 连接器数据类型 1
必须选择一个已有模型才能创建批量预测作业。 批量预测作业必须选择一个当前计算节点发布的数据集。 创建联邦预测作业 批量预测作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法、深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。
TICS服务只读权限,拥有该权限的用户仅能查看TICS服务空间侧的资源。 细粒度策略 计算节点是通过创建计算节点时的“计算节点登录名称”和“登录密码”登录的,不与用户账号关联,因此计算节点内的操作不受此策略控制。 相关链接 IAM产品介绍 TICS FullAccess策略内容 {
s社区原生应用和工具,简化云上自动化容器运行环境搭建。 边缘节点部署:基于智能边缘平台(IEF,Intelligent EdgeFabric)服务部署,IEF通过纳管您的边缘节点,提供将云上应用延伸到边缘的能力,联动边缘和云端的数据,满足客户对边缘计算资源的远程管控、数据处理、分
执行脚本是每个参与方的计算节点在本地会执行的模型训练、评估程序,用于基于本地的数据集训练子模型。 训练模型文件则定义了模型的结构,会用于每个参与方在本地初始化模型。 图2 配置执行脚本、训练模型文件 配置已方、对方数据集。在作业的数据集配置中,选择己方、对方的本地数据集,此外需将已方的数
因此模型文件result_10为该线性模型的系数加上偏置项。 图2 查看模型结果文件 本地利用测试集评估模型。可以采用如下脚本,会打印出模型在测试集上的准确率和AUC两个指标。 图3 本地评估模型的Python脚本 父主题: 测试步骤
自定义限制:自定义其他属性,比如设置文件访问者的名称、工号等,使用“=”相连。比如:name=huaxiaowei,code=996181。 操作步骤 创建合约。 用户登录进入计算节点页面。 在左侧导航树上选择“可信数据交换 > 数据申请”,打开数据申请页面。 在数据申请页面单击“我收到的”。 在“我收到的”
本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20) 训练轮数 1
算节点中支持配置连接器,注册数据集,任务执行,查看任务执行日志。 连接器(Connector) 连接器是可信智能计算节点内置的连接特定数据源所需的对象模板,目前支持连接MRS Hive、MySQL、RDS、DWS、ORACLE等多种连接器,并支持扩展增加新的连接器。 数据集(Data
政府多委办局之间密文数据融合计算,实现多方数据的融合分析。 基于隐私集合求交实现多方安全SQL JOIN分析, 原始数据保存在各个用户本地,统计分析算子下推到本地数据域执行。 多方分析JOIN算子进行数据隐私保护,计算过程将多方加密后数据完成计算,计算结果加密返回给数据使用方。 支持自定
约束与限制 使用TICS前,您需要认真阅读并了解以下使用限制。 浏览器限制 您需要使用支持的浏览器版本登录TICS。 表1 浏览器兼容性 浏览器 建议版本 Google Chrome 120,119,118