检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
练作业,提高训练成功率和提升作业的稳定性。详细可了解:无条件自动重启。 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图3 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
练作业,提高训练成功率和提升作业的稳定性。详细可了解:无条件自动重启。 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图3 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
练作业,提高训练成功率和提升作业的稳定性。详细可了解:无条件自动重启。 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图3 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
下图展示了高优先级的降频问题,从表格中可以看到flash attention算子耗时最长且降频比率最高,因此降频严重影响了整体的训练性能。对于降频问题,用户通常无法自行解决,需要联系服务方如华为云技术支持排查机器的温度和功耗。 图11 降频分析 AICPU Issues 下图展示了高优先级的AICPU
练作业,提高训练成功率和提升作业的稳定性。详细可了解:无条件自动重启。 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图3 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
练作业,提高训练成功率和提升作业的稳定性。详细可了解:无条件自动重启。 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图3 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
练作业,提高训练成功率和提升作业的稳定性。详细可了解:无条件自动重启。 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图3 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
练作业,提高训练成功率和提升作业的稳定性。详细可了解:无条件自动重启。 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图3 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
练作业,提高训练成功率和提升作业的稳定性。详细可了解:无条件自动重启。 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图3 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
的版本过高(transformers==4.45.0),导致llama2系列模型与transformers不兼容导致报错,报错如图所示。 解决:在训练开始前,针对llama2模型中的tokenizer,需要修在generation_config.json中加入"do_sample":
的版本过高(transformers==4.45.0),导致llama2系列模型与transformers不兼容导致报错,报错如图所示。 解决:在训练开始前,针对llama2模型中的tokenizer,需要修在generation_config.json中加入"do_sample":
的版本过高(transformers==4.45.0),导致llama2系列模型与transformers不兼容导致报错,报错如图所示。 解决:在训练开始前,针对llama2模型中的tokenizer,需要修在generation_config.json中加入"do_sample":
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
装方式和版本约束的信息,详细参数见模型配置文件编写说明。导入模型时,模型配置文件中的安装包依赖参数“dependencies”如何编写? 解决方案 安装包存在前后依赖关系。例如您在安装“mmcv-full”之前,需要完成“Cython”、“pytest-runner”、“pyte
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案
不占用显卡资源,建议增加1个容器,也可以在全量推理或增量推理的容器上启动。 前提条件 已准备好Server环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的Server和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保容器可以访问公网。 步骤一
jobs/{job_id} 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 job_id 是 String 可视化作业ID。 请求消息 无请求参数。 响应消息 响应参数如表2所示。
zer文件,具体请参见训练tokenizer文件说明。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训
如果要使用自动重启功能,资源规格必须选择八卡规格。 当前功能还处于试验阶段,只有llama3-8B/70B适配。 Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图4 选择资源池规格 作业日志选择OBS
如果要使用自动重启功能,资源规格必须选择八卡规格。 当前功能还处于试验阶段,只有llama3-8B/70B适配。 Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS