检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
行动规则即为告警触发时,AOM以怎样的方式来告知用户。启用告警行动规则后,系统根据关联SMN主题与消息模板来发送告警通知。更多详情请参考AOM用户指南。 根据界面提示填写行动规则名称,选择行动规则类型,选择上一步创建的主题,选择消息模板,然后单击“确定”。 图6 新建告警行动规则 在之前打开的“创建告警
#原始权重/tokenizer目录,用户手动创建,用户根据实际规划目录修改,后续操作步骤中会提示 |── Qwen2-72B # 输出权重及日志路径,用户可根据实际自行规划,无需手动创建,此路径对应表1表格中output_dir参数值
#原始权重/tokenizer目录,用户手动创建,用户根据实际规划目录修改,后续操作步骤中会提示 |── Qwen2-72B # 输出权重及日志路径,用户可根据实际自行规划,无需手动创建,此路径对应表1表格中output_dir参数值
使用debug方式调试代码的前提是本地的代码和云端的代码是完全一致的,如果不一致可能会导致在本地打断点的行和实际运行时该行的代码并不一样,会出现意想不到的错误。 因此在配置云上Python Interpreter时,推荐选择Automatically upload选项,以保证本地的文件修改能自动
x_out_len建议设置小一些,比如16。在运行human_eval等生成式回答(生成式回答是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度。
x_out_len建议设置小一些,比如16。在运行human_eval等生成式回答(生成式回答是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度。
在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。
在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。
在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。
在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。
程的权重保存路径。 步骤三 启动训练脚本 Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务如产生mc2融合算子错误,可参考mc2融合算子报错 修改超参值后启动训练脚本,以 Llama2-70b-sft为例,各个模型NPU卡数可参考模型推荐参数、NPU卡数。
#原始权重/tokenizer目录,用户手动创建,用户根据实际规划目录修改,后续操作步骤中会提示 |── Qwen2-72B # 输出权重及日志路径,用户可根据实际自行规划,无需手动创建,此路径对应表1表格中output_dir参数值
"instance_count" : 1 } ] } 响应示例 状态码: 200 更新服务成功。 { } 状态码 状态码 描述 200 更新服务成功。 错误码 请参见错误码。 父主题: 服务管理
-m ipykernel install --user --name "my-py3-tensorflow-env" 执行完毕后,可以看到下述提示信息。 (my-env) sh-4.4$python3 -m ipykernel install --user --name "my-py3-tensorflow-env"
复制JSON文件的内容 图2 粘贴JSON文件的内容到DashBoards模板 修改视图名称,单击Import。 图3 修改视图名称 注意:如提示uid重复,则单击“Change uid”,修改json中的uid后单击“Import”。 图4 修改uid 导入成功后,在Dashboa
可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。 目前只支持jpg、jpeg、bmp、png格式的图片。 图2 预测结果 表1 预测结果中的参数说明 参数 说明 predicted_label
返回结果”区域输出测试结果。如模型准确率不满足预期,可在“数据标注”页签,重新进行模型训练及模型部署。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。 输入代码:其中预测分析要求数据集中数据的预测列名称为class,否则会导致预测失败。 { "data": {
击“确定”完成修改。修改后,之前添加了此标签的音频,都将被标注为新的标签名称。 删除标签:单击操作列的“删除”按钮,在弹出的对话框中,根据提示选择删除对象,然后单击“确定”。 删除后的标签无法恢复,请谨慎操作。 继续运行 完成数据的确认之后,返回新版自动学习的页面,在数据标注节点
可在“数据标注”页签中添加音频并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。 表1 预测结果中的参数说明 参数 说明 predicted_label 该段音频的预测类别。 score 预测为此类别的置信度。
#原始权重/tokenizer目录,用户手动创建,用户根据实际规划目录修改,后续操作步骤中会提示 |── Qwen2-72B # 输出权重及日志路径,用户可根据实际自行规划,无需手动创建,此路径对应表1表格中output_dir参数值