检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查询Workflow下的执行记录列表。 接口约束 无 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/workflows/{workflow_id}/executions
low,创建工作流。 接口约束 无 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/workflows 表1 路径参数 参数
导入模型 导入模型功能包括: 初始化已存在的模型,根据模型ID生成模型对象。 创建模型。模型对象的属性,请参见查询模型详情。 示例模型文件 以PyTorch为例,编写模型文件。PyTorch模型包结构可参考模型包规范介绍。 OBS桶/目录名 ├── resnet │ ├── model
在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行查询服务监控 1 2 3 4 5 6 7 from modelarts.session import Session
在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行查询服务日志 1 2 3 4 5 6 7 from modelarts.session import Session
查询支持的镜像列表 功能介绍 根据指定条件分页查询满足条件的所有镜像。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/images
以满足算子和整网的性能要求。在推理场景下使用,可以对于模型的图和算子运行内置的知识库进行自动优化,以提升模型的运行效率。 自动高性能算子生成工具AKG AKG(Auto Kernel Generator)对深度神经网络中的算子进行优化,并提供特定模式下的算子自动融合功能。提升在昇腾硬件后端上运行网络的性能。
训练时transformers版本要求为4.45.0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: ①更新transformes和tokenizers版本 GLM4-9B模型,容器内执行以下步骤:
通过ID查询Workflow工作流详情。 接口约束 无 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/workflows/{workflow_id}
训练时transformers版本要求为4.45.0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本 GLM4-9B模型,容器内执行以下步骤:
训练时transformers版本要求为4.45.0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本 GLM4-9B模型,容器内执行以下步骤:
estimator.update_job_configs(description="update job description") 方式二:根据创建训练作业生成的训练作业对象更新。 job_instance.update_job_configs(description="update job
在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行服务详情查询 1 2 3 4 5 6 7 from modelarts.session import Session
job_id="your job id") info = estimator.get_job_log() print(info) 方式二:根据创建训练作业生成的训练作业对象查询。 log = job_instance.get_job_log(task_id="worker-0") print(log)
damp_percent=0.01, desc_act=False, sym=True, use_exllama=False) 您也可以将自己的数据集作为字符串列表传递,但强烈建议使用GPTQ论文中的相同数据集。 dataset = ["auto-gptq is an easy-to-use model
批量添加样本 功能介绍 批量添加样本。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets/{dataset_i
查询超参搜索某个trial的结果 功能介绍 根据传入的trial_id,查询指定trial的搜索结果。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2
需其他配置需根据样例自行添加。 图1 yaml文件样例 表1 模型训练参数 参数 示例值 参数说明 dataset 【预训练:pt】预训练数据集相对或绝对地址 【微调:sft】微调数据集相对或绝对地址 【必修改】训练时指定的输入数据路径。请根据实际规划修改。用户根据训练情况二选一;
数据标注”,进入“数据标注”管理页面。 在数据标注管理页面,单击页面右上角“创建标注作业”,进入“创建标注作业”页面,根据需求创建不同类型的标注作业。 填写标注作业基本信息,标注作业的“名称”和“描述”。 根据您的需求,选择“标注场景”和“标注类型”。 图1 选择标注场景和标注类型 针对不同类型的标注作
推理服务,可供用户直接调用API完成推理业务。 约束限制 如果模型的“任务类型”是“文本问答”或“文本生成”,则支持在线推理。如果模型的“任务类型”是除“文本问答”和“文本生成”之外的类型(即自定义模型),则模型文件必须满足自定义模型规范(推理)才支持模型自定义推理。 当使用自定