检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
识别并对文本中电话号码、邮箱、身份证等信息进行脱敏。 敏感词过滤 识别并过滤文本中包含的涉黄、涉暴、涉政等敏感词。 通用清洗 正则替换 基于给定的正则表达式,进行文本替换。 正则过滤 基于给定的正则表达式,进行文本过滤。 数据读取 单栏文字版PDF文档读取 解析PDF文档。数据集文件类型为PDF时显示。 word文本读取
启流式开关后,API会在生成文本的过程中,实时地将生成的文本发送给客户端,而不是等到生成完成后一次性将所有文本发送给客户端。 响应参数 非流式 状态码: 200 表4 响应Body参数 参数 参数类型 描述 id String 用来标识每个响应的唯一字符串。 created Integer
是 List<String> 待统计Token数的字符串。List长度必须为奇数。 with_prompt 否 Boolean 是否仅统计输入字符的Token数 true:仅统计输入字符串的Token数; false:统计输入字符串和推理过程产生字符的总Token数。 响应参数 表4
大模型的计量单位token指的是什么 令牌(Token)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。 例如,在英文中,有些组合单词会根据语义拆分,如overweight会被设计为2个toke
获取Token消耗规则 每个Token代表模型处理和生成文本的基本单位,它可以是一个单词、字符或字符的片段。模型的输入和输出都会被转换成Token,并根据模型的概率分布进行采样或计算。训练服务的费用按实际消耗的Token数量计算,即实际消耗的Token数量乘以Token的单价。为
基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}的故事”,邮件写作类可以使用“根据以下信息,写一封商务电子邮件。{邮件内容描述}”,摘要任务可以使用“请根据以下内容生成摘要。\n{文本内容}”。\n为换行符。
name = "reverse" description = "字符串翻转" principle = "请在需要字符串翻转时调用此工具" input_desc = "输入的字符串" output_desc = "反转的结果" def _run(self
书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SFT中获得的知识,生成准确而全面的回答。然而,依赖通用大模型自身知识来回答问题,在某些垂直领域应用中会面临挑战:
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 文本补全:给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。例如让模型依据要求写邮件、做摘要总结、生成观点见解等。 多轮对话:基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 图1 服务管理
"是的,我试了 还是不行"} 数据质量:若数据格式没有问题,仍然发现模型效果不好,您可以根据具体问题针对性的提升您的数据质量。比如,随着对话轮数的增加,模型出现了遗忘,可以检查构造的训练数据中轮数是否普遍较少,建议根据实际情况增加数据中的对话轮数。 父主题: 典型训练问题和优化策略
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格和格式等。 撰写提示词时,可以设置提示词变量,即在提示词中通过添加占位符{{ }}标识,表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将
d等格式文档。 初始化 根据相应解析接口定义DocSplit类,以使用华为Pangu DocSplit为例。 其中,filePath指的是需要解析的文档路径;mode为分割解析模式,具体定义如下: 0 - 返回文档的原始段落,不做其他处理。 1 - 根据标注的书签或目录分段,一般适合有层级标签的word文档。
解析模式,具体定义如下: 0 - 返回文档的原始段落,不做其他处理。 1 - 根据标注的书签或目录分段,一般适合有层级标签的word文档。 2 - 根据内容里的章节条分段,适合制度类文档。 3 - 根据长度分段,默认按照500字拆分,会尽量保留完整句子。 文档解析 import com
数据多样性:微调数据需要具有一定的多样性,多样性能增加任务的复杂度和难度,让模型能够处理不同的情况和问题,提升模型泛化性。例如,现在需要微调一个文案创作的模型,模型需要生成各个城市的宣传文案: 文案创作场景-典型低质量数据:数据多样性差。 {"context": ["请帮我写一份宣传文案"], "target":
表情符号校验 校验数据中是否存在表情符号,如 ⛪ 璉等,常见表情符清单请参见Full Emoji List。 空值校验 校验数据中是否存在空字符串。 异常格式校验 检查数据是否满足数据格式要求。 冗余换行符校验 检查数据中是否存在连续两个及以上的换行符。 表2 健康度状态说明 正常数据量
String 用来标识每个响应的唯一字符串。 created Integer 响应生成的时间。 choices Array of choices objects 生成的文本列表,包含以下属性: message:生成的文本内容。 index:生成的文本在列表中的索引,从0开始。 usage
``` %s ``` 生成的内容必须满足以下要求: 1.生成内容的字数要求为200个字左右; 2.生成的内容必须生动有趣、丰富多样; 3.生成内容的语言风格必须口语化; 4.生成的内容开头必须能足够引起观众的兴趣,比如可以采取对目标观众反问、对比等方式; 5.生成的内容结尾必须要引导观众购买;
应使用常见的词汇和语言表达方式,避免使用生僻单词和复杂的句式,防止机器理解偏差。 多用肯定句,少用否定句,比如“你不能A -> 你必须保证^A”,“你不能生成重复的问题 -> 你需要保证生成的问题的多样性”。 中文里的形容词+名词结构需要加“的”,少了“的”模型有时候会难以理解。例如,真实场景,它可能理解为truth
实现对话问答、文案生成和阅读理解等任务,并具备逻辑推理、代码生成以及插件调用等高阶能力。 NLP大模型提供了基模型和功能模型两种类型: 基模型:已经在大量数据上进行了预训练,学习并理解了各种复杂特征和模式。这些模型可以作为其他任务的基础,例如阅读理解、文本生成和情感分析等。基模型本身不具备对话问答能力。