检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通用”页签,单击“创意活动方案生成”进入该应用。 图1 “创意活动方案生成”应用 如图2,在应用页面,输入所需的活动主题与活动描述,单击“创作”。 图2 活动主题与描述 该预置应用将根据所输入的主题与描述,在“结果生成”中生成相应的创意活动方案。 图3 创意活动方案生成结果
文献等非正文内容。 N-gram特征过滤 根据如下特征过滤: N gram重复率:以N个字符为粒度统计频率大于1的N-gram的个数与所有N-gram的个数比值。 Top N gram占比:频率最高N gram占比。 段落特征过滤 根据如下特征过滤: 段落重复率。 段落非中文字符占比。
是 List<String> 待统计Token数的字符串。List长度必须为奇数。 with_prompt 否 Boolean 是否仅统计输入字符的Token数 true:仅统计输入字符串的Token数; false:统计输入字符串和推理过程产生字符的总Token数。 响应参数 表4
基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}的故事”,邮件写作类可以使用“根据以下信息,写一封商务电子邮件。{邮件内容描述}”,摘要任务可以使用“请根据以下内容生成摘要。\n{文本内容}”。\n为换行符。
String 用来标识每个响应的唯一字符串。 created Integer 响应生成的时间。 choices Array of choices objects 生成的文本列表,包含以下属性: message:生成的文本内容。 index:生成的文本在列表中的索引,从0开始。 usage
撰写所需提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,
规则场景 说明 文本生成:根据标题、关键词、简介生成段落。 若您的无监督文档中含标题、关键词、简介等结构化信息,可以将有监督的问题设置为“请根据标题xxx/关键性xxx/简介xxx,生成一段不少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。
连接大模型组件和其他组件。 配置意图识别组件 意图识别组件用于根据用户的输入进行分类并导向后续不同的处理流程。 意图识别组件一般位于工作流前置位置。在对用户的输入进行意图识别时,意图识别组件会通过大模型推理,匹配用户输入与开发者预先定义的描述类别的关键字,并根据匹配结果流向对应处理流程。 在左侧组件面
"是的,我试了 还是不行"} 数据质量:若数据格式没有问题,仍然发现模型效果不好,您可以根据具体问题针对性的提升您的数据质量。比如,随着对话轮数的增加,模型出现了遗忘,可以检查构造的训练数据中轮数是否普遍较少,建议根据实际情况增加数据中的对话轮数。 父主题: 大模型微调训练类问题
文本生成:对于文本生成场景(宣传文案生成、信稿文本生成、文学创作等),通常希望生成的文本有一点的多样性,建议在保证不过于随机的基础上,增大“温度”或“核采样”的值(二者选其一调整)。若发现生成的文本过于发散,可以降低“话题重复度控制”的值,保证内容统一;反之若发现内容过于单一,甚至出现了复读机式的重复内容生成,则需要增加“话题重复度控制”的值。
该参数值的数据类型,当前支持三种类型。 String:字符串类型 Integer:四字节整型 Number:八字节浮点数 请求方式 默认以Body方式请求。 是否必填 指定该参数是否为必填项。 打开开关:必填 关闭开关:非必填 默认值 参数的默认值,如果插件服务的入参生成缺失,默认值会在大模型解析时被使用。
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
口数量上全覆盖。 数据中需要提供JSON的字段解释,以及Query和JSON生成逻辑解释。这些信息需要拼入Prompt,并确保人以及大模型可以根据Query、字段解释、Query到JSON的生成逻辑生成符合客户要求的JSON。Prompt会作为输入(context字段)的内容组成
创建评估 选择评估使用的变量数据集和评估方法。 评估用例集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。 评估方法:根据选择的评估方法,对模型生成结果和预期结果进行比较,并根据算法给出相应的得分。 图2 创建提示词评估任务 单击“确定”,评估任务自动进入执行状态。
答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化。
npm i @huaweicloud/huaweicloud-sdk-pangulargemodels 在线生成SDK代码 API Explorer可根据需要动态生成SDK代码功能,降低您使用SDK的难度,推荐使用。 您可以在API Explorer中具体API页面的“代码示例
温度系数(temperature)控制生成语言模型中生成文本的随机性和创造性,调整模型的softmax输出层中预测词的概率。其值越大,则预测词的概率的方差减小,即很多词被选择的可能性增大,利于文本多样化。 多样性与一致性 多样性和一致性是评估LLM生成语言的两个重要方面。 多样性指模型生成的不同输出之间
在气象预报中,集合预报是指对初始场加入一定程序的扰动,使其生成一组由不同初始场预报的天气预报结果,从而提供对未来天气状态的概率信息。这种方法可以更好地表达预报的不确定性,从而提高预报的准确性和可靠性。 集合成员数 用于选择生成预报的不同初始场的数量,取值为2~10。 扰动类型 用于选择生成集合预报初始场的扰动类型
``` %s ``` 生成的内容必须满足以下要求: 1.生成内容的字数要求为200个字左右; 2.生成的内容必须生动有趣、丰富多样; 3.生成内容的语言风格必须口语化; 4.生成的内容开头必须能足够引起观众的兴趣,比如可以采取对目标观众反问、对比等方式; 5.生成的内容结尾必须要引导观众购买;
书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SFT中获得的知识,生成准确而全面的回答。然而,依赖通用大模型自身知识来回答问题,在某些垂直领域应用中会面临挑战: