检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
例如,“结合金融领域相关知识,生成一份调研报告大纲,报告主题是区块链洞察”、“以上是某理财app用户反馈的问题,请提供解决方案。” 人设: 增加人设可以让生成的内容更符合该领域需求。 例如,“假设你是一位银行面试官,请生成10个银行面试问题。”、“假如你是一个高级文案策划,请生成10个理财产品的
当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限
描述任务要求。 例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题答案”,“生成”一词不是很恰当,模型会引入一些外部知识。 例如,在
考察模型逻辑 虽然模型的思考过程是个黑盒,但可以通过反问模型答案生成的逻辑或提问模型是否理解任务要求,考察模型生成的逻辑,提升模型思维过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时
P大模型为程序员提供了强大的代码助手,显著提升了研发效率。 盘古大模型能够根据用户给定的题目,快速生成高质量的代码,支持Java、Python、Go等多种编程语言。它不仅能够提供完整的代码实现,还能够根据用户的需求,进行代码补全和不同编程语言之间的改写转化。 借助盘古大模型,程序
LLMs(语言模型) LLMs模块用于对大语言模型API的适配封装,提供统一的接口快速地调用盘古、GALLERY三方模型等模型API。 初始化:根据相应模型定义LLM类,如使用盘古LLM为: LLMs.of("pangu")。 from pangukitsappdev.api.llms
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案
可以引导大模型生成准确率更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。
排顺序 在提示词中内容的顺序也很重要,基于盘古大模型调优经验,将关键信息放在结尾处,模型输出效果更好。不同任务的关键信息不同,若需要模型生成的内容更具创意性,关键信息需要为内容描述;需要模型严格遵循指令进行回复的,关键信息为指令及说明。 父主题: 常用方法论
新建工单”,搜索“盘古大模型”产品,选择问题类型并提交工单。 图1 立即购买 图2 新建工单 获取购买权限后,根据需要选择计费模式,基模型需选择“N2 - 基础模型功能 & 应用增强功能”。用户可根据需求自行选择功能模型,输入资源名称,类型选择“边缘部署”,输入需要订购的推理算力,单击“确认订单”。
用于评估模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2:机器翻译、⽂本摘要等生成类任务常用的评价指标。用于评估模型生成句子与实际句子在中词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4:机器翻译、⽂本摘要等生成类任务常用的评价指
证书会自动生成,一般无需修改。 pkgs // 包目录,用户自行命名 docker docker.tgz // docker 二进制文件,要求版本>19.0.3 certs // 使用generate命令生成的证书,指
意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 写作示例
种任务的基础,包括但不限于阅读理解、文本生成和情感分析等,但不具备对话问答能力。 功能模型:功能模型是在基模型的基础上经过微调,专门适应特定任务,并具备对话问答的能力。经过特定场景优化的功能模型能够更有效地处理文案生成、阅读理解、代码生成等任务。 专业大模型:针对特定场景优化的大
开启内容审核后,可以有效拦截大模型输入、输出的有害信息,保障模型调用安全。 NLP模型在流式输出时,同样支持内容审核。特别是模型生成超长内容时,通过实时审核模型生成的内容片段,可以有效降低首token的审核时延,同时确保用户看到的内容是经过严格审核的。 图3 大模型内容审核 购买内容审
”、“天空为什么是蓝色的?” 说明:对任务要求的补充说明。如:“有冒险、友情等元素”、“生成文本少于200字” 上下文:提供角色、示例、外部信息等,供大模型参考。 提示工程是什么 大模型生成文本的过程可视为一个黑盒,同一模型下对于同一个场景,使用不同的提示词也会获得不同的结果。提
评估完成后,进入“评估报告”页面,可以查看每条数据的评估结果。 在评估结果中,“预期结果”即为变量值(问题)所预设的期望回答,“生成结果”即模型回复的结果。通过比较“预期结果”与“生成结果”的差异可以判断提示词效果。 图3 查看评估报告 父主题: 批量评估提示词效果
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确且更具针对性的输出,从而提高模型在特定任务上的性能。在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造,如果提示词模板满足不了使用需求,可再单独创建。 提示词模板可以在平台“应用开发
表1 规则打分指标 指标名称 说明 BLEU-1 模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2 模型生成句子与实际句子在中词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4 模型生成结果和实际句子的加权平均精确率,数值越高,表明模型性能越好。
为什么微调后的模型,回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。