已找到以下 99 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 创建自定义场景 - 推荐系统 RES

    选择需要的场景类型。 “基于用户推荐物品”:某些用户的属性很相似,如电商平台根据这些用户的行为(浏览、点击、购买)计算与这些用户相似用户的行为,为该用户推荐相似用户浏览或购买的物品。 “基于用户推荐用户”:某些用户的属性很相似,如交友平台根据这些用户的行为(浏览、点击)或属性推荐与这些用户相似用户。

  • 近线作业 - 推荐系统 RES

    10 过滤历史记录 生成的候选集中是否过滤历史记录,如需要过滤历史记录,则开启此项。 默认关闭。 候选集的排序策略 生成候选集的排列规则,其排列顺序包括: 随机排序:不对候选集排序。 热度排序:根据物品属性表里的物品热度排序,由基于行为数据的用户画像更新生成,热度越大排序越靠前。

  • 离线作业简介 - 推荐系统 RES

    特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。 特征工程 召回策略 召回策略用于生成推荐的候选集,在原始数据中通过算法和规则匹配用户的候选集。 召回策略 排序策略 排序策略根据不同的算法模型对召回策略或者近线策略生成的候选集进行重排序,得到推荐候选集列表。

  • 基本概念 - 推荐系统 RES

    在线服务应用于做线上推荐,每个服务之间是独立的。即根据不同的离线计算得到的候选集以及相关参数,提供不同的推荐服务。 推荐引擎 以推荐为业务逻辑的引擎,即系统根据配置生成召回集作为起点,输出推荐结果集为终点的引擎。 排序引擎 以排序为业务逻辑的引擎,即用户提供排序集为输入,系统根据排序算法输出排序结果的引擎。

  • 自定义场景简介 - 推荐系统 RES

    召回策略通过大数据计算或深度训练生成推荐候选集。 召回策略 过滤规则 过滤规则用于生成推荐的过滤集,包含黑白名单、历史行为过滤等特性。支持用户在线上推理过程中完成对相关物品的过滤。 过滤规则 特征工程 特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。

  • 效果评估 - 推荐系统 RES

    效果评估 创建效果评估可以对服务设置指标,查看推荐效果的反馈,可以根据系统提供的指标添加。 创建效果评估作业 登录RES管理控制台,在左侧导航栏中选择“推荐业务>智能场景”,默认进入“智能场景”列表。 在智能场景列表中,单击“运行中”状态的目标场景名称,进入详情页。 单击“效果评

  • 管理在线服务 - 推荐系统 RES

    作。您也可以通过单击在线服务名称查看在线服务的详细信息。 编辑服务 用户可以通过“编辑”在线服务修改该参数信息进行计算。生成的数据会覆盖原来的在线服务计算生成的数据。“部署中”的在线服务不支持编辑。操作步骤如下: 登录RES管理控制台,在左侧菜单栏中选择“在线服务”,进入服务列表。

  • 产品功能 - 推荐系统 RES

    数据源 数据源功能可以在用户上传数据后,将离线数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。经过数据质量检测来确保数据的合法性。提供数据源智能检测,输出数据分布和数据质量信息等,智能完成特征工程。 智能场景 根据业务场景选择对应的智能推荐场景,快速搭建专属推荐系统。主要应用为猜你喜欢、关联推荐、热门推荐。

  • 通过DLF重新执行作业 - 推荐系统 RES

    通过DLF重新执行作业 推荐系统提供了重新执行作业的API,用来将任务以相同的配置重新执行一次,实现对离线任务生成结果的更新。以固定的周期定时调用此API,可保持结果处于一个较新的状态,以获得更好的推荐结果。 以上功能,我们也可以使用数据治理中心 DataArts Studio,

  • 推荐引擎和排序引擎有什么区别? - 推荐系统 RES

    推荐引擎和排序引擎有什么区别? 推荐引擎 推荐引擎是以推荐为业务逻辑的引擎,即系统根据配置生成召回集作为起点,输出推荐结果集为终点的引擎。 排序引擎 排序引擎是以排序为业务逻辑的引擎,即用户提供排序集为输入,系统根据排序算法输出排序结果的引擎。 父主题: 自定义场景

  • 过滤规则 - 推荐系统 RES

    过滤规则 过滤规则用于配置候选集的过滤方式,使之不进入候选集。对于每个需要过滤的行为,生成用户具有该行为的物品的列表。再对同用户的每种行为的物品列表进行“与”或者“或”的关系,最终生成用户-物品过滤表。 表1 过滤规则参数说明 参数名称 说明 名称 自定义过滤规则名称。由中文、英

  • 排序策略-离线特征工程 - 推荐系统 RES

    离散的区间个数不能超过100个,请您根据业务需求合理分配参数值。 单击,增加用户特征。在下拉选项中勾选特征参数名称并进行配置。当“特征值类型”为“多值枚举型”时,您可以根据需求自定义枚举个数。其他类型可选的参数信息如下: “等距离散”:根据业务需求限定数值“最小值”、“最大值”和“距离”。例如,根据age进

  • RES自定义策略 - 推荐系统 RES

    可视化视图创建自定义策略:无需了解策略语法,按可视化视图导航栏选择云服务、操作、资源、条件等策略内容,可自动生成策略。 JSON视图创建自定义策略:可以在选择策略模板后,根据具体需求编辑策略内容;也可以直接在编辑框内编写JSON格式的策略内容。 具体创建步骤请参见:创建自定义策略。

  • 提交组合作业 - 推荐系统 RES

    index_region_num 否 Integer 索引表预分区个数。只有特种工程中,初始用户画像-物品画像-标准宽表生成算子需要使用索引表预分区个数,其他离线算子因为不生成索引表不需要此参数。 示例 请求示例 { "job_name": "yyn-test", "job_description":

  • 管理属性配置 - 推荐系统 RES

    在场景下拉列表中选择目标场景进行配置,配置完毕单击属性操作列的“保存”。 “任务配置地址”:用于存放创建作业时自动生成的JSON格式的配置源文件存储路径。 “全局特征信息文件”:根据全局特征信息文件规范准备并上传的全局特征信息文件路径。 “通用格式数据”:经过特征工程处理的宽表路径。 “

  • 策略参数说明 - 推荐系统 RES

    ItemCF 基于用户的协同过滤推荐 UserCF 基于交替最小二乘的矩阵分解推荐 AlsCF 基于历史行为记忆生成候选集 HistoryBehaviorMemory 人工录入生成候选集 ManualInput sorting 逻辑斯蒂回归 LR 因子分解机 FM 域感知因子分解机 FFM

  • 提交实时流近线作业 - 推荐系统 RES

    NEARLINE_WRITE_USER_PROFILE (根据用户信息日志写入用户画像) NEARLINE_WRITE_ITEM_PROFILE(根据物品信息日志写入物品画像) NEARLINE_UPDATE_USER_PORTRAIT(根据行为日志,更新用户画像) NEARLINE_UP

  • 查询在线服务详情 - 推荐系统 RES

    查询在线服务详情 功能介绍 根据给定的workspace_id和resource_id及category查询在线服务。 调试 您可以在API Explorer中调试该接口。 URI GET /v2.0/{project_id}/workspaces/{workspace_id}/

  • 自定义场景(热度推荐) - 推荐系统 RES

    “推荐候选集”:选择步骤3配置的召回策略生成的召回结果集“hot-recall-DIREC”。 “过滤”:非必选,此样例进行黑名单过滤配置来完成在线的推荐结果过滤。 “行为过滤”:配置“时间区间”为“3”,“行为类型”选择“物品曝光”即为在线服务生成的结果会过滤近三天内用户浏览过的物品

  • 如何开始使用RES? - 推荐系统 RES

    相关数据。 上传实时数据 数据质量管理 数据质量管理操作可以将数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。 数据质量管理 选择并配置推荐业务 智能场景 针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景简介 自定义场景