检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
选择可参照表1中的template列 max_samples 50000 用于指定训练过程中使用的最大样本数量。如果设置了这个参数,训练过程将只使用指定数量的样本,而忽略其他样本。这可以用于控制训练过程的规模和计算需求 overwrite_cache true 用于指定是否覆盖缓
在ModelArts中训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: Standard模型训练
注作业。 在弹出的“启动智能标注”对话框中,选择智能标注类型,可选“主动学习”或者“预标注”,详见表1和表2。 表1 主动学习 参数 说明 智能标注类型 “主动学习”。“主动学习”表示系统将自动使用半监督学习、难例筛选等多种手段进行智能标注,降低人工标注量,帮助用户找到难例。 算法类型
Boolean 是否只导入难例。可选值如下: true:只导入难例样本 false:导入全部样本(默认值) excluded_labels 否 Array of Label objects 不导入包含指定标签的样本。 final_annotation 否 Boolean 是否导入到最终状态。可选值如下:
请谨慎操作。 验收范围 全部通过:被驳回的样本,也会通过。 全部驳回:已经通过的样本,需要重新标注,下次验收时重新进行审核。 剩余全部通过:已经驳回的会驳回,其余会自动验收通过。 剩余全部驳回:样本抽中的通过的,不需要标注了,未通过和样本未抽中的需要重新标注验收。 图10 完成验收
选择可参照表1中的template列 max_samples 50000 用于指定训练过程中使用的最大样本数量。如果设置了这个参数,训练过程将只使用指定数量的样本,而忽略其他样本。这可以用于控制训练过程的规模和计算需求 overwrite_cache true 用于指定是否覆盖缓
Integer 数据集样本总数。 total_sub_sample_count Integer 由父样本所产生的子样本总数,比如:从视频标注数据集中抽取的关键帧图片总数就是子样本总数。 unconfirmed_sample_count Integer 智能标注待确认的标注样本数。 update_time
(计算空泡),从而提高训练效率。 学习率预热 不同的学习率调度器(决定什么阶段用多大的学习率)有不同的学习率调度相关超参,例如线性调度可以选择从一个初始学习率lr-warmup-init开始预热。您可以选择多少比例的训练迭代步使用预热阶段的学习率。不同的训练框架有不同的参数命名,需要结合代码实现设置对应的参数。
验收操作。可选值如下: 0:完成验收时,通过全部样本(包括单张驳回)。 1:完成验收时,驳回全部样本(包括单张通过)。 4:完成验收时, 只通过单张验收通过的样本及未处理的样本。 5:完成验收时, 只驳回单张验收驳回的样本及未处理的样本。 checking_stats CheckTaskStats
不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
验收操作。可选值如下: 0:完成验收时,通过全部样本(包括单张驳回)。 1:完成验收时,驳回全部样本(包括单张通过)。 4:完成验收时, 只通过单张验收通过的样本及未处理的样本。 5:完成验收时, 只驳回单张验收驳回的样本及未处理的样本。 checking_stats CheckTaskStats
同步数据集 功能介绍 从数据集输入位置同步数据至数据集,包含样本及标注信息。文本类数据集不支持此操作。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v
不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts
调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。
total_sample_count Integer 版本样本总数。 total_sub_sample_count Integer 从父样本生成的子样本总数。 train_evaluate_sample_ratio String 发布版本时切分训练验证比例,默认为1.00,即全部分为训练集。 update_time
默认不启用。启用后,需设置对应的训练验证比例。 输入“训练集比例”,数值只能是0~1区间内的数。设置好“训练集比例”后,“验证集比例”自动填充。“训练集比例”加“验证集比例”等于1。 说明: 为确保训练模型的精度,建议将训练集比例设置为0.8或者0.9。 “训练集比例”即用于训练模型的样本数据比例;“验证集比
建议您前往OBS服务,了解OBS计费详情,创建相应的OBS桶用于存储ModelArts使用的数据。 ModelArts标注完样本集后,如何保证退出后不再产生计费? 标注样本集本身不计费,数据集存储在OBS中,收取OBS的费用。建议您前往OBS控制台,删除存储的数据和OBS桶,即可停止收费。