检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
salai/zero/low_level/low_level_optim.py Step4 下载数据集 训练使用的开源数据集UCF101.rar,执行如下命令下载数据集并处理。数据集相关介绍参见https://www.crcv.ucf.edu/data/UCF101.php。 mkdir
16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
chat/internvl/model/internlm2/modeling_internlm2.py 步骤七 下载数据集 先创建文件夹用来存放数据集,再下载数据集。 cd ${container_work_dir}/InternVL/internvl_chat mkdir -p
“obs://test-modelarts/tensorflow/data/” 用于存储数据集文件。 “obs://test-modelarts/tensorflow/log/” 用于存储训练日志文件。 Step2 创建数据集并上传至OBS 使用网站https://storage.googleapis
参数类型 描述 data_type String 数据输入类型,包括数据存储位置、数据集两种方式。 attributes Array of Map<String,String> objects 数据输入为数据集时的相关属性。枚举值: data_format数据格式。 data_segmentation数据切分方式。
将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后,将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train
B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结构,此处以llama2-13B为例(权重文件可能变化,以下仅为举例): obs://<bucket_name>/model/llama-2-13b-chat-hf/
ModelArts的理念就是让AI开发变得更简单、更方便。面向不同经验的AI开发者,提供便捷易用的使用流程。例如,面向业务开发者,不需关注模型或编码,可使用自动学习流程快速构建AI应用;面向AI初学者,不需关注模型开发,使用预置算法构建AI应用;面向AI工程师,提供多种开发环境,多种操作流程和模式,方便开发者编码扩展,快速构建模型及应用。
GitHub的开源仓库的文件上传,请参考支持Clone GitHub开源仓库; 存放在OBS中的文件上传,请参考支持上传OBS文件; 类似开源数据集这样的远端文件上传,请参考支持上传远端文件; 在Notebook的使用中,可以快速查找实例,可以在同一个Notebook实例中切换镜像,方
<>=&"'特殊字符。 email String 标注成员邮箱。 role Integer 角色。可选值如下: 0:打标者 1:审核者 2:团队管理者 3:数据集拥有者 status Integer 标注成员的当前登录状态。可选值如下: 0:未发送邀请邮件 1:已发送邀请邮件但未登录 2:已登录 3:标注成员已删除
16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
是否有“运行中”的Workflow列表。如果有,单击Workflow列表中“操作 > 删除”即可停止计费。 进入“ModelArts>自动学习”页面,检查是否有“运行中”的项目。如果有,单击项目列表中“操作 > 删除”即可停止计费。 进入“ModelArts>开发空间>Noteb
B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结构,此处以llama2-13B为例(权重文件可能变化,以下仅为举例): obs://<bucket_name>/model/llama-2-13b-chat-hf/
16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
Cloud-LLM-xxx.zip目录下并解压缩。 unzip AscendCloud-*.zip 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至SFS Turbo后,目录结构如下。 /mnt/sfs_turbo/ |──llm_train
将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后,将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train
Cloud-LLM-xxx.zip目录下并解压缩。 unzip AscendCloud-*.zip 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至SFS Turbo后,目录结构如下。 /mnt/sfs_turbo/ |──llm_train
是否有“运行中”的Workflow列表。如果有,单击Workflow列表中“操作 > 删除”即可停止计费。 进入“ModelArts>自动学习”页面,检查是否有“运行中”的项目。如果有,单击项目列表中“操作 > 删除”即可停止计费。 进入“ModelArts>开发空间>Noteb