检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本
实现车辆自主感知环境、规划路径和控制行驶。支持自动驾驶场景PB级数据下模型高效训练,助力自动驾驶特有的感知、规控、仿真生成等全链路相关算法深度优化并快速迭代。 内容审核 深入业务场景,提供完备成熟的内容审核/CV场景快速昇腾迁移的方案,高效解决业务内容审核的算力/国产化需求,助力企业业务稳健发展。
String 数据输入类型,支持数据存储位置(OBS)、ModelArts数据集两种方式。 attributes 否 Array of Map<String,String> objects 数据输入为数据集时的相关属性。枚举值: data_format:数据格式。 data_segmentation:数据切分方式。
系统会自动添加预置框架关联的超参。 使用预置框架构建训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。
up 参数说明: --model-path:原始模型权重路径。 --quan-path:转换后权重保存路径。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
# 推理工具 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train
String 数据输入类型,支持数据存储位置(OBS)、ModelArts数据集两种方式。 attributes 否 Array of Map<String,String> objects 数据输入为数据集时的相关属性。枚举值: data_format:数据格式。 data_segmentation:数据切分方式。
ava-v1.5-13b at main (huggingface.co) 图1 下载llava-v1.5-13b模型 Step5 下载数据集 请用户自行获取MME评估集,将MME评估集放于${container_work_dir}/multimodal_algorithm/LL
CommonOperations权限只能二选一,不能同时选。 OBS对象存储服务 授予子用户使用OBS服务的权限。ModelArts的数据集、开发环境、训练作业、模型推理部署均需要通过OBS进行数据中转。 OBS OperateAccess 必选 SWR容器镜像仓库 授予子用户
ud-3rdLLM-905-xxx.zip在本地解压缩后,将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train
如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
<>=&"'特殊字符。 email String 标注成员邮箱。 role Integer 角色。可选值如下: 0:打标者 1:审核者 2:团队管理者 3:数据集拥有者 status Integer 标注成员的当前登录状态。可选值如下: 0:未发送邀请邮件 1:已发送邀请邮件但未登录 2:已登录 3:标注成员已删除
chat/internvl/model/internlm2/modeling_internlm2.py 步骤七 下载数据集 先创建文件夹用来存放数据集,再下载数据集。 cd ${container_work_dir}/InternVL/internvl_chat mkdir -p