检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片,且数据集中每个标签要有大于5个样本。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。
表1 字段属性参数说明 字段属性 参数 参数说明 举例 自定义字典 取值范围 在识别当前字段类型的文字时,选择字典的取值范围中最相似的取值为最后识别结果。
表1 字段属性参数说明 字段属性 参数 参数说明 举例 自定义字典 取值范围 在识别当前字段类型的文字时,选择字典的取值范围中最相似的取值为最后识别结果。
智能问答 通过中文分词、短文本相似度、命名实体识别等自然语言处理相关技术,计算两个问题对的相似度,可解决问答、对话、语料挖掘、知识库构建等问题。 内容推荐 通过文本分类预测模型,精确匹配出语义相似的内容,快速构建内容推荐场景。
训练分类器 确定模板图片的参照字段和识别区后,多模板分类工作流在模板数量较多,或版式相似度较高的情况下,建议针对不同的模板上传对应的训练集数据,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有商品分类的图片,即覆盖所有标签的图片。 每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片,且数据集中每个标签要有大于5个样本。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。
“分类模式”:打开“分类模式”开关时,单独对分类器的准确度进行评估。上传图片后,右侧会显示模板自动分类的结果,包括“模板ID”、“模板名”、“置信度”。关闭“分类模式”开关时,默认评估状态为端到端地对待识别图片自动分类并进行结构化识别。
表1 字段属性参数说明 字段属性 参数 参数说明 举例 自定义字典 取值范围 在识别当前字段类型的文字时,选择字典的取值范围中最相似的取值为最后识别结果。
表1 字段属性参数说明 字段属性 参数 参数说明 举例 自定义字典 取值范围 在识别当前字段类型的文字时,选择字典的取值范围中最相似的取值为最后识别结果。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的热轧钢板表面缺陷标签准备图片数据。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据集样本数应大于100,用于测试的已标注数据应不少于20张,样本数达1万张以上性能更优。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有材质类型的待定级图片。 为保证训练效果,需要准备至少20张待训练的图片数据,低于20张工作流数据处理会报错。此外,为优化模型,建议对金相图像的第二相边界标注清晰。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的商品标签准备图片数据。每个商品标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个商品标签准备200个以上的数据。