检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
获取超参敏感度分析结果 功能介绍 获取超参敏感度分析结果的汇总表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
精度测试 benchmark工具用于精度验证,主要工作原理是:固定模型的输入,通过benchmark工具进行推理,并将推理得到的输出与标杆数据进行相似度度量(余弦相似度和平均相对误差),得到模型转换后的精度偏差信息。
数字人场景 样例 场景 说明 Wav2Lip推理基于DevServer适配PyTorch NPU推理指导 Wav2Lip训练基于DevServer适配PyTorch NPU训练指导 Wav2Lip,人脸说话视频模型,训练、推理 Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 物体检测数据集中,如果标注框坐标超过图片,将无法识别该图片为已标注图片。 数据上传至OBS 在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。
当前比对结果支持计算Cosine(余弦相似度)、MaxAbsErr(最大绝对误差)和MaxRelativeErr(最大相对误差)、One Thousandth Err Ratio(双千分之一)和Five Thousandths Err Ratio(双千分之五)这几种评价指标,工具通过阈值过滤筛选出不达标
它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等。 聚类 聚类是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。
物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应在所有图片个数相加超过100张,如果某些图片的标签具有相似性,则需要更多的图片。用于训练的图片,至少有1种以上的分类,每种分类的图片数不少50张。 标注时,类内方差尽量要小。
debugger.stop() (可选)梯度数据相似度比对。
Wav2Lip推理基于DevServer适配PyTorch NPU推理指导(6.3.907) Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。
判别器Visual Quality Discriminator对生成结果的质量进行规范,提高生成视频的清晰度。 引入预训练的唇音同步判别模型Pre-trained Lip-sync Expert,作为衡量生成结果的唇音同步性的额外损失,可以更好的保证生成结果的唇音同步性。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据上传至OBS 在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。 上传OBS的文件规范: 文件名规范:不能有+、空格、制表符。
图4 SimDeduplication效果图 表1 高级参数说明 参数名 是否必选 默认值 参数说明 simlarity_threshold 否 0.9 相似程度阈值,两张图片间的相似度大于阈值时,其中一张会作为重复图片被过滤掉。取值范围为0~1。
父主题: 训练作业调测
综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数值范围和稳定性方面略逊一筹。因此,选择哪种格式取决于具体的应用场景和训练需求。 父主题: 训练脚本说明
综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数值范围和稳定性方面略逊一筹。因此,选择哪种格式取决于具体的应用场景和训练需求。 父主题: 训练脚本说明
综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数值范围和稳定性方面略逊一筹。因此,选择哪种格式往往取决于具体的应用场景和训练需求。 父主题: 训练脚本说明
综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供了优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数值范围和稳定性方面略逊一筹。因此,选择哪种格式往往取决于具体的应用场景和训练需求。 父主题: 训练脚本说明
simlarity_threshold 否 0.9 相似度阈值。两张图片相似程度超过阈值时,判定为相似图片,反之按非相似图片处理。输入取值范围为0~1。 embedding_distance 否 0.2 样本特征间距。
数据可以通过相似度或者深度学习算法进行选择。数据选择可以避免人工采集图片过程中引入的重复图片、相似图片等问题;在一批输入旧模型的推理数据中,通过内置规则的数据选择可以进一步提升旧模型精度。
Anneal算法从先前采样的一个试验点作为起点,然后从与先验分布相似的分布中采样每组超参数,但其密度更集中在选择的试验点周围。随着时间推移,算法会倾向于从越来越接近最佳点处采样。在采样过程中,算法可能绘制一个次佳试验作为最佳试验,以一定概率跳出局部最优解。