检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
执行训练任务【旧】 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b SFT全参微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的配置,参数详解可查看训练参数说明,其中【GBS、
节点被标记为具有未知故障污点。 A200001 节点管理 驱动升级 GPU升级。 节点正在执行GPU驱动升级。 A200002 节点管理 驱动升级 NPU升级。 节点正在执行NPU驱动升级。 A200008 节点管理 节点准入 准入检测。 节点正在进行节点准入检测,包括基本的节点配置检查和简单的业务验证。 A050933
in/AscendSpeed 下执行启动脚本,先修改以下命令中的参数,再复制执行。 启动训练脚本可使用以下两种启动命令,二选一即可,其中区别如下: 传递参数形式:将主节点IP地址、节点个数、节点RANK的参数传递至运行的脚本中执行。 # 单机执行命令为:sh scripts/llama2/0_pl_sft_13b
执行训练任务(历史版本) 权重文件支持以下组合方式,用户根据自己实际要求选择: 训练stage 不加载权重 增量训练:加载权重,不加载优化器 断点续训:加载权重+优化器 pt sft CKPT_LOAD_TYPE=0 CKPT_LOAD_TYPE=1 USER_CONVERTED_CKPT_PATH=xxx
\ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5
配置多分支节点数据 功能介绍 仅用于存在多分支执行的场景,在编写构建工作流节点时,节点的数据输入来源暂不确定,可能是多个依赖节点中任意一个节点的输出。只有当依赖节点全部执行完成后,才会根据实际执行情况自动获取有效输出作为输入。 使用案例 from modelarts import
构建条件节点控制分支执行 功能介绍 主要用于执行流程的条件分支选择,可以简单的进行数值比较来控制执行流程,也可以根据节点输出的metric相关信息决定后续的执行流程。主要应用场景如下: 可以用于需要根据不同的输入值来决定后续执行流程的场景。例如:需要根据训练节点输出的精度信息来决
train /home/ma-user/ws/llm_train/LLaMAFactory/demo.yaml 执行多机启动命令(可选) 多台机器执行训练启动命令如下。 多机执行命令为:sh demo.sh <MASTER_ADDR=xx.xx.xx.xx> <NNODES=4> <NODE_RANK=0>
为自定义镜像), 然后使用DataArts执行此脚本的任务时提示没有这个库。 原因分析 客户创建了多个虚拟环境,numba库安装在了python-3.7.10中,如图1所示。 图1 查询创建的虚拟环境 解决方案 在Terminal中执行conda deactivate命令退出当前
执行训练任务 执行训练任务【新】 执行训练任务【旧】 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
执行训练任务 ascendfactory-cli方式启动(推荐) demo.sh方式启动(历史版本) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
配置SNAT规则。 SNAT功能通过绑定弹性公网IP,实现私有IP向公有IP的转换,可实现VPC内跨可用区的多个云主机共享弹性公网IP、安全高效地访问互联网。 公网NAT网关页面,单击创建的NAT网关名称,进入NAT网关详情页。 在SNAT规则页签下,单击“添加SNAT规则”。
执行训练任务 执行训练任务(推荐) 执行训练任务(历史版本) 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.912)
in/npu-smi --shm-size 60g --device=/dev/davinci_manager --device=/dev/hisi_hdc --device=/dev/devmm_svm --device=/dev/davinci0 --security-opt
执行训练任务 执行训练任务(推荐) 执行训练任务(历史版本) 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.912)
--net=bridge \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci_manager
in/npu-smi --shm-size 60g --device=/dev/davinci_manager --device=/dev/hisi_hdc --device=/dev/devmm_svm --device=/dev/davinci0 --security-opt
\ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5
60g --device=/dev/davinci_manager --device=/dev/hisi_hdc --device=/dev/devmm_svm --device=/dev/davinci0 --device=/dev/davinci1 --device=/dev/davinci2
docker run -itd --net=host \ --device=/dev/davinci0 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ --shm-size=32g