检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
关信息。 表1 字段属性参数说明 字段属性 参数 参数说明 举例 自定义字典 取值范围 在识别当前字段类型的文字时,选择字典的取值范围中最相似的取值为最后识别结果。 例如: “字段类型名称”:“城市” “字段属性”:“自定义字典” “取值范围”:“Shenzhen”、“Beijing”、“Xi'an”
选择数据 在使用热轧钢板表面缺陷检测工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入基于热轧钢板表面缺陷检测工作流创建的其他应用中已创建的数据集。 新建训练数据集 导入数据集 前提条件 已在视
HiLens套件(使用HiLens安全帽检测技能开发可训练技能) ModelArts Pro的HiLens套件提供了安全帽检测技能,通过工作流指引支持自主上传数据集,零代码构建安全帽检测技能,并一键下发到端侧设备HiLens Kit;针对难例数据,可快速迭代更新技能,提升精度。
息。 图1 应用基本信息 在线测试应用 在“应用监控”页面,您可以针对“运行中”的应用使用在线测试功能,在“上传测试图片”右侧单击“选择文件”,上传本地的测试图片,下侧会显示预测结果。 查看历史版本 在“应用监控”页面,您可以查看当前应用所部署的不同版本信息,包括“更新时间”、“
OBS 2.0支持HiLens安全帽检测技能 HiLens套件提供面向智慧园区的安全帽检测技能,支持自主上传图片数据,构建高精度安全帽检测模型,快速开发安全帽检测技能,实现园区自动检测工人未戴安全帽的行为。 已发布北京四区域 HiLens安全帽检测技能
通用单模板工作流 工作流介绍 上传模板图片 定义预处理 框选参照字段 框选识别区 评估应用 部署服务 自定义字段类型 编辑应用 删除应用 父主题: 文字识别套件
多模板分类工作流 工作流介绍 上传模板图片 定义预处理 框选参照字段 框选识别区 训练分类器 评估应用 部署服务 编辑应用 自定义字段类型 删除应用 父主题: 文字识别套件
单模板工作流 通过工作流指引构建文字识别模板,识别单个板式图片中的文字,快速实现文档、票证等场景的文字识别。详情请见使用单模板工作流开发应用。 多模板工作流 通过工作流指引支持自定义多个文字识别模板,通过模型训练,自动识别图片所属模板,从而支持从大量不同板式图像中提取结构化信息。通
在文件中找到“aksk_request”,修改内容有两处: (1)填写获取的AK、SK。 (2)将代码示例中的请求url替换为自定义OCR部署后生成的url,只使用图片中用蓝色标注的字段进行替换。 (3)将代码示例中的# option["side"]="front"替换为: option["template_id"]="xxx"
的流程自动化,只需要客户自己上传标注图片,就可以在线完成模型训练、评估、发布。 图3 零售场景 物流场景 物流场景需要处理各种格式的票据图片,用户可以通过简单的标注生成自己的专属模板,实现关键字段的自动识别和提取。 特点:对各种格式的票据图片,可制作模板实现关键字段的自动识别和提取。
SKU后,自动标注数据。 选择数据 创建SKU(可选) 在商品识别场景下,如果上传的数据包含未标注数据,您需要创建SKU,即商品各类单品的图片,方便后续针对数据集中的数据进行自动标注。 如果数据集是已标注数据,您可以选择不创建SKU,直接执行下一步。 创建SKU 标注数据 针对已
查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“交并比变化情况”和“损失变化”。 图1 模型训练 模型如何提升效果 检查图片标注是否准确,第二相区域标注工作量较大,建议基于自动标注的结果进一步优化标注精度。 可根据损失函数选择适当的训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很
击选择“评估范围”,单击“添加对比版本”。 详细评估 “详细评估”下方显示各个标签下的样品数量比例,单击各标签,右侧可查看该标签识别错误的图片。 后续操作 针对当前版本的模型,经过模型评估后,如果根据业务需求,模型还需继续优化,请单击“上一步”,回到“模型训练”步骤,详细操作指导请见训练模型。
详细评估 “详细评估”下方显示各个标签下正确率,即对应标签下预测正确的样本数占该标签下样本总数比例,单击各标签,右侧可查看该标签识别错误的图片。 后续操作 针对当前版本的模型,经过模型评估后,如果根据业务需求,模型还需继续优化,请单击“上一步”,回到“模型训练”步骤,详细操作指导请见训练模型。
详细评估 “详细评估”下方显示各个标签下正确率,即对应标签下预测正确的样本数占该标签下样本总数比例,单击各标签,右侧可查看该标签识别错误的图片。 后续操作 针对当前版本的模型,经过模型评估后,如果根据业务需求,模型还需继续优化,请单击“上一步”,回到“模型训练”步骤,详细操作指导请见训练模型。
详细评估 “详细评估”下方显示各个标签下准确率,即对应标签下预测正确的样本数占该标签下样本总数比例,单击各标签,右侧可查看该标签识别错误的图片。 后续操作 针对当前版本的模型,经过模型评估后,如果根据业务需求,模型还需继续优化,请单击“上一步”,回到“模型训练”步骤,详细操作指导请见训练模型。