检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
junction 简述:地图场景为交叉口。lead_vehicle和主车Ego一前一后分别以LeadVehicle_TargetSpeed_Ve0和Ego_TargetSpeed_Ve0的初始速度向交叉口行驶,Ego设定了目标在右转车道上的目标点Target_position,仿
”。 单击“添加评测指标”,选择需要添加的指标,单击“确认”。 图2 添加评测指标 单击,对阈值进行设置,也可对重要度以及评分方案进行选择。 图3 阈值设置 重要度:可选主要和次要。 评分方案:可选主要次要log函数、主要次要均匀权重、全部均匀权重。具体介绍请查看评测分数计算介绍。
”。 单击“添加评测指标”,选择需要添加的指标,单击“确认”。 图3 添加评测指标 单击,对阈值进行设置,也可对重要度以及评分方案进行选择。 图4 阈值设置 重要度:可选主要和次要。 评分方案:可选主要次要log函数、主要次要均匀权重、全部均匀权重。具体介绍请查看评测分数计算介绍。
路网设置(Road Network) 路网设置的相关文件都需要在交互页面上传,如果语句设置文件与上传文件有出入,以上传文件为准。 地图文件(Logic file) 地图文件(xodr文件)使用set_map_file语句指定。 具体场景使用xodr文件,逻辑场景使用odr文件。 例1:具体地图
内置场景挖掘规则 内置场景挖掘算法都是基于规则进行片段挖掘。平台支持的内置场景挖掘规则如下: 道路---道路环境---高速 检验规格: 包含高精地图信息 主车行驶区域road级别type为motorway 道路---道路环境---城市快速路 检验规格: 包含高精地图信息 主车行驶
示例代码 作业输入输出规范示例代码如下图所示: 父主题: 数据提取作业(数据集)
示例代码 作业输入输出规范示例代码如下图所示: 代码文件命名为ros_hard_mining.py。 父主题: 场景挖掘作业(数据标记)
语义分割点云标注任务 语义分割任务是指根据标注规范将待标注点云图像中出现的天空、道路、车辆等类标注物进行标注。 图1 语义分割点云标注任务 绘制对象 单击大规模3D语义分割任务,单击任意一帧,进入人工标注。 单击左侧标注工具栏,选择对应的标注工具。 选择对应的标注类别。 绘制标注物。
资产识别与管理 资产识别 用户在数据资产包括用户上传的数据集以及用户提供的一些个人信息。 数据资产包括但不限于文本、图形、音频、视频、照片、图像、代码、算法、模型等。 资产管理 对于用户上传至Octopus的资产,Octopus会做统一的保存管理。 对于文件类型的资产,Octop
流程指引 本文旨在帮助您了解Octopus仿真服务入门使用的基本流程,帮助您更快上手Octopus仿真服务。 操作流程 Octopus仿真服务的流程如图1所示。 图1 Octopus仿真服务全流程 表1 使用流程说明 流程 子任务 说明 详细指导 镜像仓库 镜像仓库 平台为用户提
如何一键恢复在线仿真功能? 现象:使用在线仿真功能时,场景损坏导致加载失败,或在线仿真软件所在机器系统发生故障导致数据丢失或其他不可预知问题。 解决办法: 重启在线仿真软件并重新加载场景。 关闭在线仿真软件并重新启动,先单击 √图标,再单击在线仿真软件播放按钮。 图1 在线仿真软件播放按钮
3D回放 前提要求 3D回放对回放机器配置有以下要求: 回放机器需要GPU硬件。硬件加速的方式:在chrome设置-高级中打开硬件加速 。 机器的参考配置(低配):8核cpu 、UHD620的gpu 、16G内存 、100Mbps带宽。 查看3D回放 3D回放页面详细说明如下: 图1
数据资产简介 在自动驾驶产品的开发过程中,海量的数据存储和管理是当前自动驾驶平台面临的业务挑战之一。 Octopus平台的数据服务模块提供了海量数据采集、存储以及数据并行处理等功能,供后续服务进行统一使用。数据服务开发流程如下: 图1 数据服务开发流程 地图管理:支持上传高精地图数据,可用于数据回放、仿真场景等功能。
创建训练作业前需要先选择算法,可以使用Octopus内置的算法,也可以自定义算法。 训练算法 模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度,用于衡量一个模型及其标注结果的可信度。自动驾驶领域的模型多用于目标检测,如识别并标注出图像中车辆、行人、可行区域等对象。 模型评测 编译镜像
3D2D融合预标注 自动驾驶传感器中,各个模态有各自的优势和劣势。比如相机模态对visual appearance的感知更为准确,激光雷达模态对距离感知更为有效。然后当LiDAR扫描线数过低时,经常无法甄别物体的类型,但是此时如果能结合LiDAR扫描和2D图像检测,则可以由3D扫
实时评测和延时评测介绍 实时评测 图1 实时评测 实时评测的基本架构如上图所示,实时评测算法从仿真器和AD算法按帧接收数据,每接收一帧数据,就调用一次评测函数,在最后仿真结束时将评测结果写成评测pb文件。 实时评测的实现包括如下几个步骤: 代码内实现与仿真器的通信,实时接收仿真器
与datahub对接的算法镜像制作 如图所示,算法与仿真平台datahub通过grpc连接,通过接收osi数据作为输入,并将算法内部信号输出到datahub。 仿真平台可以生成仿真的osi和算法pb,用于3d回放展示和算法的白盒化评测。 具体grpc连接datahub的代码可以参考八爪鱼提供的demo样例。
on_3d。 angle的单位一般为rad(弧度)而非degree(角度),rad = degree*pi/180,1rad约等于57.3度(详见scalar units中的angle units一节)。 与road 0的方向相反(相差180°) m_orientation: orientation_3d
创建3D预标注车道线检测任务 前提条件 在服务控制台“总览”>“我的模型”区域,开通“2D图像生成”服务,具体操作步骤请参考开通我的模型和购买套餐包。 创建任务 在左侧菜单栏中单击“智驾模型服务 > 3D预标注车道线检测”。 单击右上角“创建”。 填写创建任务信息。 图1 创建任务
仿真服务简介 Octopus仿真服务支持多种功能操作。包括用户在云上以类似操作远程桌面方式操作图形化界面的仿真软件的在线仿真服务,基于OpenSCENARIO等标准格式的仿真场景管理。泛化大量仿真场景,规控算法工程管理,多场景并行高速运行的批量仿真服务。用户可通过仿真服务完成在线