检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。 适用场景 标签传播算法(Label Propagation)适用于资讯传播、广告推荐、社区发现等场景。
标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。 URI POST /ges/v1.0/{project_id}/
该场景能帮助您实现以下功能。 推荐好友、商品或资讯 通过好友关系、用户画像、行为相似性、商品相似性、资讯传播的途径等,实现好友、商品或资讯的个性化推荐。 用户分群 通过对用户画像、行为相似度或者好友关系等,进行用户分群,实现用户群体分析管理。 异常的行为分析 通过对用户行为、
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。 参数说明
根据输入参数,执行link_prediction算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
DSL,我们可以利用DSL来完成对图的查询与计算。服务规划为DSL增加各种查询算子,细粒度的基础计算模式算子,从而使得DSL支持用户自定义的图遍历,多跳过滤查询,模式匹配,相似性算法,社区算法,推荐算法,路径分析,业务定制算法等。 例如查询点1,2为起点,第二跳的邻居点集并返回: Match<Vertex> v(['1'
如何使用图引擎服务 图引擎服务(Graph Engine Service,简称GES)是针对以“关系”为基础的“图”结构数据,进行查询、分析的服务。广泛应用于社交关系分析、营销推荐及社会化聆听、信息传播、防欺诈等具有丰富关系数据的场景。 本文档将为您介绍如何在图引擎服务管理控制台完成图数据的相关操作和分析。
于1/P,前进概率正比于1/Q。每个节点出发生成多个随机步,反映出网络的结构信息。 适用场景 Node2vec算法适用于节点功能相似性比较、节点结构相似性比较、社团聚类等场景。 参数说明 表1 Node2vec算法参数说明 参数 是否必选 说明 类型 取值范围 默认值 P 否 回退参数
云容器引擎-成长地图 | 华为云 图引擎服务 图引擎服务(Graph Engine Service)是针对以“关系”为基础的“图”结构数据,进行查询、分析的服务。广泛应用于社交关系分析、营销推荐、舆情分析、路径规划、知识图谱、金融风控等具有丰富关系数据的场景。 产品介绍 图说GES
备份图 为确保数据安全,您可以选择将图数据备份,以便后续出现故障或错误时,可以使用备份数据进行恢复操作。 操作步骤 备份操作的入口有两个:“图管理”页面和“备份管理”页面。 “图管理”页面操作如下: 登录图引擎服务管理控制台。在左侧导航栏,选择“图管理”。 在图管理列表中,选择需要备份的图,在“操作”列单击“备份”。
间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。 Louvain算法 基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层
间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。 Louvain算法 基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层
度数关联度算法(Degree Correlation) 概述 度数关联度算法(Degree Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联度算法(Degree Correlation)适用于衡量图的结构特性场景。
紧密中心度算法(Closeness Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness
中介中心度算法(Betweenness Centrality) 概述 中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域
OD中介中心度(OD-betweenness Centrality) 概述 OD中介中心度算法(OD-betweenness Centrality)在已知一系列OD出行计划前提下,以经过某个点/某条边的最短路径数目来刻画边重要性的指标。 适用场景 可用作社交、风控等网络中“中间人
边中介中心度(Edge-betweenness Centrality) 概述 边中介中心度算法(Edge-betweenness Centrality)以经过某条边的最短路径数目来刻画边重要性的指标。 适用场景 同betweenness类似,可用作关键关系的发掘;适用于社交、金融风控、交通路网、城市规划等领域
清空图(2.1.2) 功能介绍 清空图中所有数据。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1.0/{project_id}/graphs/{graph_id}/action
子图查询(2.1.13) 功能介绍 查询输入的节点和它们之间所有边所构成的子图。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/subgraphs/action?action_id=query 表1 路径参数 参数 是否必选
图管理API 查询图列表(2.1.18) 查询图详情(1.0.0) 创建图(2.2.2) 关闭图(1.0.0) 启动图(1.0.0) 删除图(1.0.0) 增量导入图(2.1.14) 导出图(1.0.5) 清空图(2.1.2) 升级图(1.0.5) 绑定EIP(1.0.6) 解绑EIP(1