检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
MinHash用于估计两个集合的Jaccard相似系数。它通常用于数据挖掘,用于大规模检测近乎相同的网页。通过使用这些信息,搜索引擎有效地避免了在搜索结果中显示两个几乎相同的网页。 以下示例展示了如何使用Set Digest函数来简单估计文本之间的相似性。通过使用函数ngrams()将输入
节点。增加任务的并行度,充分利用集群机器的计算能力,一般并行度设置为集群CPU总和的2-3倍。 操作步骤 并行度可以通过如下三种方式来设置,用户可以根据实际的内存、CPU、数据以及应用程序逻辑的情况调整并行度参数。 在会产生shuffle的操作函数内设置并行度参数,优先级最高。 testRDD
DistCP作业导入导出数据常见问题 问:DistCP类型作业导入导出数据时,是否会对比数据的一致性? 答:DistCP类型作业导入导出数据时不会对比数据的一致性,只是对数据进行复制,不会修改数据。 问:DistCP类型作业在导出时,遇到OBS里已经存在的文件是如何处理的? 答:
); select cast(186 as varchar); try_cast(value AS type) → type 与cast()相似,区别是转换失败返回null。 select try_cast(1860 as tinyint); _col0 ------- NULL
配置列统计值直方图Histogram用以增强CBO准确度 配置场景 Spark优化sql的执行,一般的优化规则都是启发式的优化规则,启发式的优化规则,仅仅根据逻辑计划本身的特点给出优化,没有考虑数据本身的特点,也就是未考虑算子本身的执行代价。Spark在2.2中引入了基于代价的优
配置列统计值直方图Histogram用以增强CBO准确度 配置场景 Spark优化sql的执行,一般的优化规则都是启发式的优化规则,启发式的优化规则,仅仅根据逻辑计划本身的特点给出优化,没有考虑数据本身的特点,也就是未考虑算子本身的执行代价。Spark在2.2中引入了基于代价的优
节点。增加任务的并行度,充分利用集群机器的计算能力,一般并行度设置为集群CPU总和的2-3倍。 操作步骤 并行度可以通过如下三种方式来设置,用户可以根据实际的内存、CPU、数据以及应用程序逻辑的情况调整并行度参数。 在会产生shuffle的操作函数内设置并行度参数,优先级最高。 testRDD
HetuEngine隐式转换对照表 在开启隐式转换功能后,当数据类型不匹配时会隐式转换,但并是不是所有的数据类型都支持隐式转换。以下为当前隐式转换功能支持的数据类型转换表: 表1 隐式转换对照表 - BOOLEAN TINYINT SMALLINT INTEGER BIGINT REAL
配置Flink任务并行度 操作场景 并行度控制任务的数量,影响操作后数据被切分成的块数。调整并行度让任务的数量和每个任务处理的数据与机器的处理能力达到更优。 查看CPU使用情况和内存占用情况,当任务和数据不是平均分布在各节点,而是集中在个别节点时,可以增大并行度使任务和数据更均匀的
普通物化视图与projection对比 物化视图类型 原表数据与物化视图一致性 灵活性 物化视图开发及维护复杂度 普通物化视图 数据从原表同步到物化视图需要时间窗。 灵活性较高,有新的业务可开发新的物化视图。 可开发复杂逻辑SQL语句的物化视图。 复杂度较高,需要开发很多物化视图,每个物化视图都需要单独去管理和维护。
UndeclaredThrowableException); (state=,code=0) 原因分析 查看MetaStore日志。 查看HDFS日志。 权限对比(test001为异常用户创建表,test002为正常用户创建表)。 drop表时报类似下面的错。 dataplan_modela_csbch2;
压缩算法来压缩数据。虽然这些算法可处理任何类型的数据,但如果数据经过排序,相似值在一起出现时,就会获得更好的压缩率。 CarbonData数据加载过程中,数据基于Table中的列顺序进行排序,从而确保相似值在一起出现,以获得更好的压缩率。 由于CarbonData按照Table中
压缩算法来压缩数据。虽然这些算法可处理任何类型的数据,但如果数据经过排序,相似值在一起出现时,就会获得更好的压缩率。 CarbonData数据加载过程中,数据基于Table中的列顺序进行排序,从而确保相似值在一起出现,以获得更好的压缩率。 由于CarbonData按照Table中
配置Flink任务并行度 操作场景 并行度控制任务的数量,影响操作后数据被切分成的块数。调整并行度让任务的数量和每个任务处理的数据与机器的处理能力达到更优。 查看CPU使用情况和内存占用情况,当任务和数据不是平均分布在各节点,而是集中在个别节点时,可以增大并行度使任务和数据更均匀的
对于可以压缩的数据,配置压缩算法可以有效减少磁盘的IO,从而达到提高性能的目的。 说明: 并非所有数据都可以进行有效压缩。例如一张图片的数据,因为图片一般已经是压缩后的数据,所以压缩效果有限。常用的压缩算法是SNAPPY,因为它有较好的Encoding/Decoding速度和可以接受的压缩率。
基线数据做对比来获得。 Job基线的确定有如下三个原则: 充分利用集群资源 Reduce阶段尽量放在一轮 每个Task的执行时间要合理 操作步骤 原则一:充分利用集群资源。 Job运行时,会让所有的节点都有任务处理,且处于繁忙状态,这样才能保证资源充分利用,任务的并发度达到最大。
对于可以压缩的数据,配置压缩算法可以有效减少磁盘的IO,从而达到提高性能的目的。 说明: 并非所有数据都可以进行有效压缩。例如一张图片的数据,因为图片一般已经是压缩后的数据,所以压缩效果有限。常用的压缩算法是SNAPPY,因为它有较好的Encoding/Decoding速度和可以接受的压缩率。
来处理您向其投入的任何负载。每个TSD使用CloudTable集群中的HBase来存储和检索时间序列数据。数据模式经过高度优化,可快速聚合相似的时间序列,从而最大限度地减少存储空间。TSD的用户不需要直接访问底层存储。您可以通过HTTP API与TSD进行通信。所有通信都发生在同
基线数据做对比来获得。 Job基线的确定有如下三个原则: 充分利用集群资源 Reduce阶段尽量放在一轮 每个Task的执行时间要合理 操作步骤 原则一:充分利用集群资源。 Job运行时,会让所有的节点都有任务处理,且处于繁忙状态,这样才能保证资源充分利用,任务的并发度达到最大。
0/flume/bin/flume-manage.sh: Permission denied 解决办法 与运行正常的Flume节点进行文件和文件夹权限对比,更改错误文件或文件夹权限。 父主题: 使用Flume