检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来
评估资源:依据选择的模型数据自动给出所需的评估资源。 打分模式:当前版本打分模式仅支持基于规则,用户不可选,且暂无人工打分。基于规则打分:使用预置的相似度或准确率打分规则对比模型生成结果与真实标注的差异,从而计算模型指标。 评估数据: 选择已创建并发布的评估数据集。 基本信息: 输入任务的名称和描述。
和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据不同的词向量模型进行初始化、更新、查找和清理操作。向量存储还可以支持多种相似算法,如余弦相似度、欧氏距离、曼哈顿距离等,实现对数据的相似度评分和排序。
和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据不同的词向量模型进行初始化、更新、查找和清理操作。向量存储还可以支持多种相似算法,如余弦相似度、欧氏距离、曼哈顿距离等,实现对数据的相似度评分和排序。
Embeddings # redis向量 # 不同的向量存储, 不同的相似算法;计算的评分规则不同; 可以同过scoreThreshold 设置相似性判断阈值 # 例如使用Redis向量、余弦相似度、CSS词向量模型,并且设置相似性判断阈值为0.1f,代码示例如下 embedding_api
Assertions; //redis向量 // 不同的向量存储, 不同的相似算法;计算的评分规则不同; 可以同过scoreThreshold 设置相似性判断阈值 // 例如使用Redis向量、余弦相似度、CSS词向量模型,并且设置相似性判断阈值为0.1f,代码示例如下 Cache cache =
打基础 先制定一个能够明确表达主题的提示词(若模型训练时包含相似任务,可参考模型训练使用的提示词),再由简至繁,逐步增加细节和说明。打好基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}的故事”,邮件写作类可
这种情况可能是由于以下几个原因导致的,建议您依次排查: Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学会的知识就更难,若目标任务本身
量模型的性能。当前支持基于规则打分,即基于相似度/准确率进行打分,对比模型预测结果与标注数据的差异,从而计算模型指标。支持的模型指标请参见下表。 表1 规则打分指标 指标名称 说明 BLEU-1 模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2
识。 例如,在构造泛化问题的任务中,需要基于原问题改写为相同含义的问题,而不是生成相似的问题。当提示词使用“请生成10个跟“手机银行怎么转账”相似的问题”时,模型会认为实体/关键词/场景一致则是相似(在这个例子里实体为手机银行),而不是任务需要的语义级别的相同含义,所以输出内容会发散。
为什么微调后的模型,回答中会出现乱码 为什么微调后的模型,回答会异常中断 为什么微调后的模型,只能回答在训练样本中学过的问题 为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同 为什么微调后的模型,评估结果很好,但实际场景表现却很差 多轮问答场景,为什么微调后的效果不好 数据量满足要求,为什么微调后的效果不好
发挥盘古大模型在实际业务中的价值。 快速入门 使用能力调测与盘古NLP大模型进行对话问答 使用盘古加工算子构建单轮问答数据集 快速创建盘古图片Caption数据标注任务 创建盘古NLP大模型SFT任务 调用盘古NLP大模型API实现文本对话 05 实践 通过基模型训练出行业大模型
问题二:模型生成的文案中重复讨论一个相同的话题。 解决方案:对于这种情况,可以尝试修改推理参数。例如,降低“话题重复度控制”参数的值。若调整推理参数不生效,则检查数据质量,确认数据中不存在重复数据和高度相似数据。 父主题: 从基模型训练出行业大模型
意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 写作示例
过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通过横向或纵向评估评测集的方式来验证模型效果。
景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。 保证数据的覆盖度:数据需要尽可能覆盖产品所提供的功能;数据需要覆盖难易度、长短度,包含参数丰富等场景;数据在长短、扁平与深层嵌套、对接客户api接口数量上全覆盖。 数据中需要提供JSON的
检测数据集质量 数据集创建成功后,平台将对数据集中的数据进行质量校验,并给出健康度评分、合规度评分与数据长度分布。 检测数据集质量 在“数据工程 > 数据管理”页面,选择“我的数据集”或者“训练数据集”页签。 单击数据集名称,进入数据集详情页,查看详细的数据质量。 其中,数据长度
推理参数(解码参数)是一组用于控制模型生成预测结果的参数,其可以用于控制模型生成结果的样式,如长度、随机性、创造性、多样性、准确性和丰富度等等。 当前,平台支持的推理参数包括:温度、核采样以及话题重复度控制,如下提供了这些推理参数的建议值和说明,供您参考: 表1 推理参数的建议和说明 推理参数 范围 建议值 说明
盘古大模型套件使用流程 盘古大模型套件平台是一款功能强大、集成度高的大模型开发与应用平台。该平台全面支持大模型的数据管理、清洗与配比,涵盖预训练与微调功能。此外,平台还提供了强大的模型部署、评估与调用功能,确保模型能够在生产环境中高效应用。平台支持提示词工程、AI助手及SDK开发
果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。