检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
管理模型文件 预览文件 在模型详情页,选择“模型文件”页签。单击文件名称即可在线预览文件内容。 仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在模型详情页,选择“模型文件”页签。单击操作列的“下载”,即可下载文件到本地。 删除文件 在模型详情页,选择“模型文
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_type Integer 导入方式。可选值如下: 0:目录导入 1:按manifest文件导入
OOM导致训练作业失败 问题现象 因为OOM导致的训练作业失败,会有如下几种现象。 错误码返回137,如下图所示。 Modelarts Service Log Trainina end with return code: 137 Modelarts Service Log]handle
模型支持部署的服务类型。 版本数量 模型的版本数量。 请求模式 在线服务的请求模式。 同步请求:单次推理,可同步返回结果(约<60s)。例如: 图片、较小视频文件。 异步请求:单次推理,需要异步处理返回结果(约>60s)。例如: 实时视频推理、大视频文件。 创建时间 模型的创建时间。 描述
<镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606。 ${base_image}为基础镜像地址。 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本
如果存在之前能跑通,什么都没修改,过了一阵跑不通的情况,先去排查跑通和跑不通的日志是否存在pip源更新了依赖包,如下图,安装之前跑通的老版本即可。 图1 PIP安装对比图 推荐您使用本地Pycharm远程连接Notebook调试。 如果上述情况都解决不了,请联系技术支持工程师。 建议与总结 在创建训练作业
一般情况下,onnx模型推理的结果可以认为是标杆数据,单独替换某个onnx模型为MindSpore Lite模型,运行得到的结果再与标杆数据做对比,如果没有差异则说明pipeline的差异不是由当前替换的MindSpore Lite模型引入。 如果有差异,则说明当前模型与原始onnx
模型转换,包含模型转换、优化和量化等。 应用集成。 针对转换的模型运行时应用层适配。 数据预处理。 模型编排。 模型裁剪。 精度校验。 精度对比误差统计工具。 自动化精度对比工具。 网络结构可视化工具。 性能调优。 性能测试。 性能调优三板斧。 性能分析与诊断。 迁移测试报告。 推理迁移验收表。 ModelArts开发环境
准备数据集 进入AI Gallery,搜索8类常见生活垃圾图片数据集。 单击“下载”,选择云服务区域“华北-北京四”,单击“确定”进入下载详情页。 填写如下参数: 下载方式:ModelArts数据集。 目标区域:华北-北京四。 数据类型:图片。 数据集输出位置:用来存放输出的数据标注的相关
<镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606。 ${base_image}为基础镜像地址。 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本
e是MindStudio Training Tools工具链下精度调试部分的工具包,主要包括精度预检、溢出检测和精度比对等功能,通过采集和对比标杆(GPU/CPU)环境和昇腾环境上运行训练时的差异点来判断问题所在。整体流程如下图所示,更多介绍请参考昇腾精度调试指南。 图1 精度调优流程
数据集压缩包上传至Notebook后解压 方法二:文件夹直接上传至Notebook。 类似上传代码至Notebook,直接上传数据文件夹。(由于本案例数据集中图片数量较多,通过IDE进行上传比较耗时,推荐使用方法一进行上传) 图16 文件夹直接上传至Notebook 当数据集比较大达到数GB时,建议
昇腾能力应用地图 ModelArts支持如下开源模型基于Ascend卡进行训练和推理。 主流三方大模型 ModelArts针对以下主流的LLM大模型进行了基于昇腾NPU的适配工作,可以直接使用适配过的模型进行推理训练。 表1 LLM模型训练能力 支持模型 支持模型参数量 应用场景
ascend_cloud_ops_atb-xx.whl Step4 开始推理 在容器工作目录下进到Qwen-VL/infer_test,将要测试的图片放到Qwen-VL/infer_test/images文件夹中,执行如下命令,运行推理脚本。 bash infer_demo.sh 推理结果如下所示:
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
计时长2分钟左右。 在线服务部署完成后,您可以单击操作列的预测,进入服务详情页的“预测”页面。 在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”进行预测。此处提供一个预测样例图供使用。 步骤6:清除资源 为避免产生不必要的费用,通过此示例学习订阅算法的使用后,建议您清除相关资源,避免造成资源浪费。
如果您有两份性能数据想进行对比,可以点开Compared Profiling Data选项开关,然后分别在NPU Profiling Data和Compared Profiling Data项中输入性能数据所在的Notebook本地或OBS路径,单击Submit按钮。界面参考下图。 图6 对比两份性能数据
Standard模型部署 ModelArts Standard提供模型、服务管理能力,支持多厂商多框架多功能的镜像和模型统一纳管。 通常AI模型部署和规模化落地非常复杂。 例如,智慧交通项目中,在获得训练好的模型后,需要部署到云、边、端多种场景。如果在端侧部署,需要一次性部署到不
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_samples 否 Boolean 是否导入样本。可选值如下: true:导入样本(默认值)
如果您持有多台到期日不同的专属资源池,可以将到期日统一设置到一个日期,便于日常管理和续费。 图2展示了用户将两个不同时间到期的资源,同时续费一个月,并设置“统一到期日”后的效果对比。 图2 统一到期日 更多关于统一到期日的规则请参见如何设置统一到期日。 父主题: 续费