检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
区块链 区块链是一种去中心化、分布式的账本技术,可以确保数据的安全性和可信度。以下是区块链如何使能业务创新、与业务结合并推动业务现代化的几个方面: 透明度和可信度:区块链技术通过去中心化的特点,确保所有交易和数据记录被公开透明地存储,并且无法篡改。这为企业创造了更高的数据可信度和
大数据任务调度平台设计 设计云上的大数据任务调度平台部署架构时,建议参考原则如下: 优先用大数据云服务:如果源端是自建的大数据任务调度平台和组件,在目标云平台上有对应的云服务,且功能、性能、兼容性都满足,经评估改造工作量很小,建议部署架构设计时,优先采用大数据云服务。如果目标云平台上没有
什么是平台工程 平台工程(Platform Engineering)是一种通过构建和运营自助式内部开发平台(IDP,Internal Developer Platform)来优化软件交付和生命周期管理的工程学科。其目标是通过标准化和自动化的方式,减少开发人员与底层基础设施之间的复
平台工程 什么是平台工程 如何构建平台工程 父主题: 顶层规划
如何构建平台工程 在云平台上构建平台工程,可以充分利用云平台提供的丰富服务和工具,降低构建和维护成本,并提高IDP的可靠性和可扩展性。以下是一些关键步骤。 明确平台工程的目标和需求 平台工程的核心目标是通过构建自助式内部开发平台(IDP),优化软件交付和生命周期管理,提高开发效率
受到严重影响。多云战略可以通过将业务系统部署在多个独立的云平台上,实现跨云容灾,避免单一云平台故障带来的业务中断。即使一个云平台出现问题,其他云平台上的业务仍然可以正常运行,保障业务连续性。 避免厂商锁定:将所有业务都放在一个云服务商的云平台里会造成厂商锁定,使企业在未来的谈判中
策略等。 调研数据流: 调研大数据平台及业务的架构图及数据流图,如下图: 大数据平台及业务的架构图和数据流图。 平台数据接入源。 数据流入方式(如:实时数据上报、批量数据抽取)。 分析大数据平台数据流向,数据在平台内各个组件间的流向,例如:数据采集组件类型、采集组件下一层、存储数据组件,数据处理过程中的工作流等。
优先用大数据云服务:如果源端是自建的大数据集群,在目标云平台上有对应的云服务,且功能、性能、兼容性都满足,经评估改造工作量很小,建议设计大数据集群部署架构时,优先采用大数据云服务。如果目标云平台上没有对应的大数据集群组件,部署架构设计时,可以考虑继续采用自建的方案。如果目标云平台上有对应的大数据集群组件,但
换、数据合并等操作,以确保数据的一致性和准确性。 数据存储: 大数据平台需要具备高效的数据存储能力,以承载海量的数据。常见的数据存储技术包括分布式文件系统(如HDFS)、列式数据库(如HBase)等。这些存储系统提供高可靠性、可扩展性和容错性,以支持大规模数据的存储和访问需求。 大数据计算:
概述 基于云平台的新技术正驱动着产品和服务创新浪潮。 人工智能与大模型结合,赋予产品更智能的交互和更精准的个性化服务,例如AI客服、智能推荐系统等。 区块链技术则增强了产品和服务的安全性和可信度,可应用于供应链管理、数字身份认证等场景,构建透明可追溯的体系。 数字人技术打造虚拟形
准备。 要按照应用部署架构设计方案进行云上资源的开通和配置,云上资源开通主要有如下3种方式: 在云平台Console控制台手动创建云资源。 编写脚本或通过自动化平台对接,调用云平台的API接口,批量发放云资源,每个云服务都有对应的API接口,可以进行资源的生命周期管理。详情请见对
数字化转型是指组织利用数字技术(如IT基础设施、数据库、大数据、物联网、人工智能、区块链等)对其业务模式、运营流程、产品和服务进行全面的重塑和创新,以适应快速变化的市场环境和满足客户不断提升的需求。当前主流的云计算平台都已经内置集成了丰富的、高可用和高安全的数字技术,组织可以在全球范围内通
评估和规划:首先,评估应用程序或服务的特性、依赖关系和架构。确定哪些部分适合容器化,并制定一个改造计划。 容器化平台选择:选择一个适合你的需求的容器化平台。最常见的容器化平台是Docker,但也有其他选择,如Kubernetes等。 容器化应用程序:将应用程序拆分为较小的模块或微服务
T基础设施之上。应用系统可以是独立的,也可以是更大应用系统的一部分。应用系统有时也称为业务系统、信息系统、业务应用系统、业务信息系统、工作负载等。 IT管理系统 为了支撑应用系统的长期安全稳定运行所建立的IT支撑和管理系统,如安全运营中心、IAM和监控运维系统等。 云服务 是指云
云上创新 概述 人工智能 大数据 区块链 元宇宙 物联网 父主题: 采用实施
程的必然选择。传统应用要向现代化应用演进,应用现代化要结合应用实现和云平台能力综合考虑。云平台支持应用现代化进行分层解耦,应用聚焦业务逻辑,尽可能将DFx(Design for X)及治理等公共能力建立在云平台上。 图1 现代化应用发展趋势 表1 传统应用和现代化应用比较 传统应用
保障 在上云迁移的保障阶段,需要执行以下任务来确保顺利过渡到新的云环境: 云平台监控:确保建立有效的监控系统,跟踪云平台的性能、可用性和安全性。设置警报机制,及时发现并解决潜在的问题。 系统监控和运维:设置系统监控和告警,确保及时发现和解决潜在的问题。配置基础设施监控工具,监测服务器
大数据迁移批次规划说明 大数据迁移上云时,是选择整体迁移还是分批迁移,原则如下: 整体迁移的场景: 规模小:大数据平台数据量少(TB级),计算任务数量不多,可以采用整体迁移的方法,先在云上部署大数据平台,然后全量迁移元数据、数据和任务。 关联关系复杂:大数据任务之间的关联关系很复杂,很难拆分,此时也可以选择整体迁移。
企业云化转型最核心的工作就是将支撑企业生产和运营的各种应用系统云化。首先,最基本的要求是保障应用系统可以在云平台上长期安全稳定运行;其次,要让应用系统可以充分利用云计算的优势提升应用系统的质量,如提升应用系统的韧性、敏捷性、安全性和性能等,最后,应用系统生于云、长于云,可以基于云平台提供的新技术快速进行产品、服
任务数量 调研各类任务的总数量,用于评估任务迁移周期及改造工作量。如:XX调度平台下,Jar任务XX个。 任务更新周期 识别出不同调度平台,不同任务类型的任务更新周期。如:XX调度平台XX类任务月度更新;XX平台XX类型任务每日XX点更新。 任务详细信息 识别出所有任务的详细信息,包括