检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
XXX valid number is 0” 问题现象 日志提示“root: XXX valid number is 0”,表示训练集/验证集/测试集的有效样本量为0,例如: INFO: root: Train valid number is 0. INFO: root: Eval valid
型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模
若权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的
训练后的模型可用于推理部署,搭建大模型问答助手。 主流开源大模型基于DevServer适配PyTorch NPU推理指导 推理部署、推理性能测试、推理精度测试、推理模型量化 介绍主流的开源大模型Llama系列、Qwen系列、Yi系列、Baichuan系列、ChatGLM系列等基于ModelArts
这种类似固定的卡ID号,与实际选择的卡ID不匹配。 处理方法 尽量代码里不要去修改CUDA_VISIBLE_DEVICES变量,用系统默认里面自带的。 如果必须指定卡ID,需要注意1/2/4规格下,指定的卡ID与实际分配的卡ID不匹配的情况。 如果上述方法还出现了错误,可以去no
Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 方案概览
ModelArts支持将模型部署为哪些类型的服务? 支持在线服务、批量服务和边缘服务。 父主题: 功能咨询
算图中算子的前向传播与反向传播时的输入与输出,然后再使用子命令compare进行比对生成比对表格。当前比对结果支持计算Cosine(余弦相似度)、MaxAbsErr(最大绝对误差)和MaxRelativeErr(最大相对误差)、One Thousandth Err Ratio(双千分之一)和Five
每一类数据尽量多,尽量均衡。期望获得良好效果,图像分类项目中,至少有两种以上的分类,每种分类的样本不少于20张。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据上传至OBS 在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。
sult_{timestamp}.csv属于API级,标明每个API是否通过测试。建议用户先查看accuracy_checking_result_{timestamp}.csv文件,对于其中没有通过测试的或者特定感兴趣的API,根据其API name字段在 accuracy_ch
infer_type 是 String 推理方式,取值为real-time/batch/edge。 real-time代表在线服务,将模型部署为一个Web Service,并且提供在线的测试UI与监控能力,服务一直保持运行。 batch为批量服务,批量服务可对批量数据进行推理,完成数据处理后自动停止。
服务管理概述 服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。
3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。
示模型可以使用。 步骤三:使用订阅模型部署在线服务 模型订阅成功后,可将此模型部署为在线服务 在展开的版本列表中,单击“部署 > 在线服务”跳转至部署页面。 图2 部署模型 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,也可以使用默认值,此处以“商超商品识别服务”为例。
3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。
flow、开发环境、模型训练、在线服务、专属资源池涉及到需要停止的计费项如下: 自动学习:停止因运行自动学习作业而创建的训练作业和在线服务。删除存储到OBS中的数据及OBS桶。 Workflow:停止因运行Workflow作业而创建的训练作业和在线服务。删除存储到OBS中的数据及OBS桶。
AppKey和AppSecret不匹配 当服务预测使用的AppKey和AppSecret不匹配时,报错“APIG.1009”:“AppKey or AppSecret is invalid”。 查询AppKey和AppSecret,使用APP认证访问在线服务,请参考访问在线服务(APP认证)。
绪”时表示模型可以使用。 步骤3:使用订阅模型部署在线服务 模型订阅成功后,可将此模型部署为在线服务 在展开的版本列表中,单击“部署 > 在线服务”跳转至部署页面。 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,也可以使用默认值,此处以“商超商品识别服务”为例。
SampleLabels objects 视频在线服务推理结果。 service_id String 在线服务ID。 service_name String 在线服务名称。 service_resource String 用户绑定的在线服务资源ID。 total_sample_count
获取超参敏感度分析结果 功能介绍 获取超参敏感度分析结果的汇总表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/trai