检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,质量较差的测试集无法反映模型的真实结果。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,
模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2 模型生成句子与实际句子在词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4 模型生成结果和实际句子的加权平均精确率,数值越高,表明模型性能越好。 ROUGE-1 模型生成句子与实际句子在单个词的相似度,数值越高,表明模型性能越好。
情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学会的知识就更难,若目标任务本身
滑动平滑训练 一种训练策略,通过在模型预测的标签上添加少量噪声来避免过拟合,常用于提升模型在测试数据集上的泛化能力。 极大值抑制阈值 在预测多个边界框时,用于去除高度重叠的边界框。此阈值控制相似的边界框保留的条件。 类别无关极大值抑制开关 决定是否在不同类别中应用极大值抑制阈值。 资源配置
训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。
目录下只有1个数据文件时,文件无命名要求。 目录下有多个数据文件时,需要通过命名的方式指定数据是训练数据集、验证数据集还是测试数据集。训练数据名称需包含train字样,如train01.csv;验证数据名称需包含eval字样;测试数据名称需包含test字样。文件的命名不能同时包含train、eval和test中的两个或三个。
上角“继续上传”,上传本地文件。 知识库命中测试 平台支持对创建的知识库进行命中测试,以评估知识库的效果和准确性。 命中测试通过将用户的查询与知识库中的内容进行匹配,最终输出与查询相关的信息,并根据匹配的程度进行排序。 知识库命中测试步骤如下: 登录ModelArts Studi
多场景测试:对多种不同场景下的prompt进行测试,确保在各种情境下系统能够有效响应: 不同语言对的翻译:如图3,针对不同的语言对(如中文到法语、俄语到西班牙语),评估翻译效果是否稳定。 图3 多场景测试-不同语言对 复杂对话场景:如图4,当用户在对话中频繁切换意图时,测试意图识
识。 例如,在构造泛化问题的任务中,需要基于原问题改写为相同含义的问题,而不是生成相似的问题。当提示词使用“请生成10个跟“手机银行怎么转账”相似的问题”时,模型会认为实体/关键词/场景一致则是相似(在这个例子里实体为手机银行),而不是任务需要的语义级别的相同含义,所以输出内容会发散。
业务高效完成任务和达成任务目标。 接下来介绍几种常用的提示词写作常用方法论。 打基础 先制定一个能够明确表达主题的提示词(若模型训练时包含相似任务,可参考模型训练使用的提示词),再由简至繁,逐步增加细节和说明。打好基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。
Pangu-CV-ObjectDetection-N-2.1.0 2024年12月发布的版本,支持全量微调、在线推理。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古CV大模型支持的具体操作:
管理知识库 Agent开发平台支持对知识库执行获取知识库ID、删除、命中测试操作。 新增、删除知识库中知识文档 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 进入“工作台
数据源样本为avi、mp4格式,标注文件为json格式。必须包含两个及以上后缀名字为avi或者mp4的文件。 每个视频时长要大于128s,FPS>=10,且测试集训练集都要有视频。 支持视频的格式包括常见的mp4/avi格式文件,每个视频时长要大于128s,FPS>=10,用annotation.json对文件进行标注。
用于海洋基础要素预测 2024年11月发布的版本,支持在线推理、能力调测特性,可支持1个实例部署推理。 Pangu-AI4S-Ocean_Regional_24h-20241130 用于区域海洋基础要素预测 2024年11月发布的版本,支持预训练、微调、在线推理、能力调测特性,1个训练单元起训及1个实例部署。
问题二:模型生成的文案中重复讨论一个相同的话题。 解决方案:对于这种情况,可以尝试修改推理参数。例如,降低“话题重复度控制”参数的值。若调整推理参数不生效,则检查数据质量,确认数据中不存在重复数据和高度相似数据。 父主题: 从基模型训练出行业大模型
全局文本去重 检测并去除数据中重复或高度相似的文本,防止模型过拟合或泛化性降低。 数据打标 预训练文本分类 针对预训练文本进行内容分类,例如新闻、教育、健康等类别,支持分析语种包括:中文、英文。 通用质量评估 针对文本进行通用质量的评估,例如流畅度、清晰度、丰富度等。 说明: 使用该清洗算子
在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古专业大模型支持的具体操作: 模型 预训练 微调 模型压缩 在线推理 能力调测 Pangu-NLP-BI-4K-20241130
据即可;若场景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。 保证数据的覆盖度:数据需要尽可能覆盖产品所提供的功能;数据需要覆盖难易度、长短度,包含参数丰富等场景;数据在长短、扁平与深层嵌套、对接客户api接口数量上全覆盖。 数据中需要提