检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
且集群可以随时删除,但计算性能取决于OBS访问性能,相对HDFS有所下降,建议在数据计算不频繁场景下使用。 数据存储在HDFS:数据存储和计算不分离,集群成本较高,计算性能高,但存储量受磁盘空间限制,删除集群前需将数据导出保存,建议在数据计算频繁场景下使用。 父主题: 产品咨询类
SConsole WebUI”后的链接,进入HSConsole界面。 单击“计算实例”: 导入实例配置文件:单击“导入”,在本地选择JSON格式的实例配置文件后,单击“打开”。 导入导出功能,仅保存计算实例的配置,不保存实例ID、名称、开始时间、结束时间、状态等信息,重新导入后,这些信息将会重新生成。
配置使用分布式缓存执行MapReduce任务 配置场景 本章节操作适用于MRS 3.x及之后版本。 分布式缓存在两种情况下非常有用。 滚动升级 在升级过程中,应用程序必须保持文字内容(jar文件或配置文件)不变。而这些内容并非基于当前版本的Yarn,而是要基于其提交时的版本。一般
的数据进行计算。同时在计算完成后,也可以将数据存储到HDFS。 HDFS和Spark的关系 通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。
Spark是分布式批处理框架,提供分析挖掘与迭代式内存计算能力,支持多种语言的应用开发。 通常适用以下场景: 数据处理(Data Processing):可以用来快速处理数据,兼具容错性和可扩展性。 迭代计算(Iterative Computation):支持迭代计算,有效应对多步的数据处理逻辑。
配置使用分布式缓存执行MapReduce任务 配置场景 本章节操作适用于MRS 3.x及之后版本。 分布式缓存在两种情况下非常有用。 滚动升级 在升级过程中,应用程序必须保持文字内容(jar文件或配置文件)不变。而这些内容并非基于当前版本的Yarn,而是要基于其提交时的版本。一般
reduce-xxx.tar.gz 固定文件 MR分布式缓存功能使用的各jar包 否 MR分布式缓存功能无法使用 /user/hive 固定目录 Hive相关数据存储的默认路径,包含依赖的spark lib包和用户默认表数据存储位置等 否 用户数据丢失 /user/omm-bulkload
Yarn与其他组件的关系 Yarn和Spark组件的关系 Spark的计算调度方式,可以通过Yarn的模式实现。Spark共享Yarn集群提供丰富的计算资源,将任务分布式的运行起来。Spark on Yarn分两种模式:Yarn Cluster和Yarn Client。 Yarn
应用程序。通过将数据持久化到硬盘以及replication的方式防止数据丢失。 分布式 分布式系统,易于向外扩展。每个集群支持部署多个Producer、Broker和Consumer,从而形成分布式的集群,无需停机即可扩展系统。 Kafka UI Kafka UI提供Kafka
uxio位于计算和存储之间,为包括Apache Spark、Presto、Mapreduce和Apache Hive的计算框架提供了数据抽象层,使上层的计算应用可以通过统一的客户端API和全局命名空间访问包括HDFS和OBS在内的持久化存储系统,从而实现了对计算和存储的分离。 图1
同分布(Colocation)功能是将存在关联关系的数据或可能要进行关联操作的数据存储在相同的存储节点上。HDFS文件同分布的特性是,将那些需进行关联操作的文件存放在相同的数据节点上,在进行关联操作计算时,避免了到别的数据节点上获取数据的动作,大大降低了网络带宽的占用。 Client
Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩
Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩
计海量文本的单词数量。 Hadoop集群完全使用开源Hadoop生态,采用Yarn管理集群资源,提供Hive、Spark离线大规模分布式数据存储和计算及进行海量数据分析与查询的能力。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。 步骤一:创建MRS集群:创建一个MRS
计海量文本的单词数量。 Hadoop集群完全使用开源Hadoop生态,采用Yarn管理集群资源,提供Hive、Spark离线大规模分布式数据存储和计算及进行海量数据分析与查询的能力。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。 步骤一:创建MRS集群:创建一个MRS
可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用。 RDD的生成: 从HDFS输入创建,或从与Hadoop兼容的其他存储系统中输入创建。 从父RDD转换得到新RDD。 从数据集合转换而来,通过编码实现。 RDD的存储: 用户可以选择不同的存储级别缓存
hiveobs 数据冗余存储策略 多AZ存储:数据冗余存储至多个可用区(AZ),可靠性更高。 单AZ存储:数据仅存储在单个可用区(AZ),成本更低。 单AZ存储 策略 并行文件系统的读写策略。 私有 归档数据直读 通过归档数据直读,您可以直接下载存储类别为归档存储的文件,而无需提前恢复。
ALM-45001 HetuEngine计算实例故障 此告警仅适用于MRS 3.2.0及之后版本。 告警解释 系统每60秒周期性检测HetuEngine计算实例状态,当检测到HetuEngine服务存在故障计算实例时产生该告警。 HetuEngine故障计算实例全部恢复时,告警清除。 告警属性
Presto允许查询的数据源包括Hadoop分布式文件系统(HDFS),Hive,HBase,Cassandra,关系数据库甚至专有数据存储。一个Presto查询可以组合不同数据源,执行跨数据源的数据分析。 图1 Presto架构 Presto分布式地运行在一个集群中,包含一个Coord
Storm与其他组件的关系 Storm,提供实时的分布式计算框架,它可以从数据源(如Kafka、TCP连接等)中获得实时消息数据,在实时平台上完成高吞吐、低延迟的实时计算,并将结果输出到消息队列或者进行持久化。Storm与其他组件的关系如图1所示: 图1 组件关系图 Storm和Streaming的关系