检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
步地发送到本地表所在主机进行存储,中间没有一致性的校验,如果分布式表写入数据的主机出现异常,会存在数据丢失风险; 对于数据写分布式表和数据写本地表相比,分布式表数据写入性能也会变慢,单批次分布式表写,写入节点的磁盘和网络IO会成为性能瓶颈点。 分布式表转发给各个shard成功与否
WebUI”后的链接,进入HSConsole界面。 单击“计算实例”,选择对应租户名下待操作的计算实例。单击“LogUI”列的“Coordinator”或“Worker”,将在Yarn WebUI展示Coordinator和Worker日志。 父主题: 管理HetuEngine计算实例
删除ClickHouse表 本章节介绍删除ClickHouse表样例代码。 删除在创建ClickHouse表中创建的副本表和分布式表。 示例代片段参考如下: private void dropTable(String databaseName, String tableName,
删除ClickHouse表 本章节介绍删除ClickHouse表样例代码。 删除在创建ClickHouse表中创建的副本表和分布式表。 示例代片段参考如下: private void dropTable(String databaseName, String tableName,
重启HetuEngine计算实例。 在概览页签下的“基本信息”区域,单击“HSConsole WebUI”后的链接,进入HSConsole界面。 停止正在运行的计算实例,然后单击待操作实例所在行的“操作”列的“启动”,启动HetuEngine计算实例。 查看Coordinator运行的节点范围。
DataNode的容量计算出错如何处理 问题 当多个data.dir被配置在一个磁盘分区内,DataNode的容量计算将会出错。 回答 目前容量计算是基于磁盘的,类似于Linux里面的df命令。理想状态下,用户不会在同一个磁盘内配置多个data.dir,否则所有的数据都将写入一个磁盘,在性能上会有很大的影响。
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
Hive ORC数据存储优化 操作场景 “ORC”是一种高效的列存储格式,在压缩比和读取效率上优于其他文件格式。 建议使用“ORC”作为Hive表默认的存储格式。 前提条件 已登录Hive客户端,具体操作请参见Hive客户端使用实践。 操作步骤 推荐:使用“SNAPPY”压缩,适用于压缩比和读取效率要求均衡场景。
Hive ORC数据存储优化 操作场景 “ORC”是一种高效的列存储格式,在压缩比和读取效率上优于其他文件格式。 建议使用“ORC”作为Hive表默认的存储格式。 前提条件 已登录Hive客户端,具体操作请参见Hive客户端使用实践。 操作步骤 推荐:使用“SNAPPY”压缩,适用于压缩比和读取效率要求均衡场景。
DataNode的容量计算出错如何处理 问题 当多个data.dir被配置在一个磁盘分区内,DataNode的容量计算将会出错。 回答 目前容量计算是基于磁盘的,类似于Linux里面的df命令。理想状态下,用户不会在同一个磁盘内配置多个data.dir,否则所有的数据都将写入一个磁盘,在性能上会有很大的影响。
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
Kafka是一个分布式的消息发布-订阅系统。 它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
ZooKeeper基本原理 ZooKeeper简介 ZooKeeper是一个分布式、高可用性的协调服务。在大数据产品中主要提供两个功能: 帮助系统避免单点故障,建立可靠的应用程序。 提供分布式协作服务和维护配置信息。 ZooKeeper结构 ZooKeeper集群中的节点分为三种
Hadoop集群完全使用开源Hadoop生态,采用YARN管理集群资源,提供Hive、Spark离线大规模分布式数据存储和计算,SparkStreaming、Flink流式数据计算、Tez有向无环图的分布式计算框架等Hadoop生态圈的组件,进行海量数据分析与查询。 Hadoop、Hive、Spa
从HDFS输入创建,或从与Hadoop兼容的其他存储系统中输入创建。 从父RDD转换得到新RDD。 从数据集合转换而来,通过编码实现。 RDD的存储: 用户可以选择不同的存储级别缓存RDD以便重用(RDD有11种存储级别)。 当前RDD默认是存储于内存,但当内存不足时,RDD会溢出到磁盘中。
配置MRS集群通过IAM委托对接OBS MRS支持用户将数据存储在OBS服务中,使用MRS集群仅作数据计算处理的存算模式。MRS通过IAM服务的“委托”机制进行简单配置, 实现使用ECS自动获取的临时AK/SK访问OBS。避免了AK/SK直接暴露在配置文件中的风险。 通过绑定委托
Spark2x与其他组件的关系 Spark和HDFS的关系 通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。 分解来看,Spark分成控制端(Driver)和
使用ZooKeeper客户端 ZooKeeper是一个开源的,高可靠的,分布式一致性协调服务。ZooKeeper设计目标是用来解决那些复杂,易出错的分布式系统难以保证数据一致性的。不必开发专门的协同应用,十分适合高可用服务保持数据一致性。 背景信息 在使用客户端前,除主管理节点以