检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过导入文件更新点边的指定属性(2.2.13) 功能介绍 通过导入文件更新点边的指定属性。 为防止系统重启时,不能正常恢复更新图数据,建议在使用图期间,不要删除存储在OBS中的数据。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/action
} ] } 添加边时的平行边处理策略: 通过cypher添加边的时候,允许添加重复边,此处的重复边的定义为<源点,终点>相同的两条边。 添加无label的边的方法: 通过Cypher添加边时必须指定label,所以指定待添加边的label为默认值”__DEFAULT__”即可,例如create
} ] } 添加边时的平行边处理策略: 通过cypher添加边的时候,允许添加重复边,此处的重复边的定义为<源点,终点>相同的两条边。 添加无label的边的方法: 通过Cypher添加边时必须指定label,所以指定待添加边的label为默认值”__DEFAULT__”即可,例如create
认值为4。 directed 否 Boolean 是否考虑边的方向,取值为true或false,默认值为true。 weight 否 String 空或字符串。 空:边上的权重、距离默认为“1”。 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为“1”。 说明:
没有任何节点标注信息的情况。 字符串:将节点的对应的属性字段取值作为初始化标签(类型为string,对于未知标签的点,初始化标签字段赋空);适用于已标注部分节点标签,预测未知节点标签的情况。 说明: 当initial取值为“字符串”时,其中具有初始化标签的点的数量应大于0,小于点总数。
图操作接口旨在为用户提供从输入、计算到输出的端到端全流程操作接口。 图属性值类型 Python DSL当前支持3种数据类型:int、float和bool,分别对应C++中的int64_t、double和bool基本数据类型。 Combiner类型 Combiner用于在满足交换律和结合律的计算过程中对数据
空:边上的权重、距离默认为“1” 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为“1” 说明: 边上权重应大于0。 weight 关于迭代次数(iterations)和收敛精度(convergence)参数如何调节,请参考迭代次数和收敛精度的关系。 表2 reponse_data参数说明
> 账单管理”查看资源的费用账单,以了解该资源在某个时间段的使用量和计费信息。 账单上报周期 包年/包月计费模式的资源完成支付后,会实时上报一条账单到计费系统进行结算。 按需计费模式的资源按照固定周期上报使用量到计费系统进行结算。按需计费模式产品根据使用量类型的不同,分为按小时、按
否 String 边上权重,取值为空或字符串, 当图中的边没有配置该属性时,算法会报错。 空:边上的权重、距离默认为“1"。 字符串:对应的边上的属性将作为权重。 OD_pairs和seeds参数二选一,当OD_pairs和seeds同时输入时,以OD_pair为准,忽略seeds。
约束条件 元数据的数据类型如表1和表2所示。 表1 元数据属性约束条件 数据类型 约束条件 char 小于‘<’ 大于‘>’ 等于‘=’ 不等于‘!=’ 在范围‘range’ 大于或等于‘>=’ 小于或等于‘<=’ char array 小于‘<’ 大于‘>’ 等于‘=’ 不等于‘!=’
功能介绍 根据给定的indexName,IndexType等信息创建索引。目前支持的索引:复合索引。 复合索引有全局点索引(GlobalCompositeVertexIndex)和全局边索引(GlobalCompositeEdgeIndex)。复合索引可在label和property上创建索引,使用索引查询可以加快速度。
约束条件 元数据的数据类型如表1和表2所示。 表1 元数据属性约束条件 数据类型 约束条件 char 小于‘<’ 大于‘>’ 等于‘=’ 不等于‘!=’ 在范围‘range’ 大于或等于‘>=’ 小于或等于‘<=’ char array 小于‘<’ 大于‘>’ 等于‘=’ 不等于‘!=’
表3 data参数说明 参数 类型 说明 vertexNum Integer 图的点数。 edgeNum Integer 图的边数。 labelDetails(2.2.14) Object 不同label下的点边数目信息。若需要正常显示此字段,请按照表 labelDetails数据各要素说明建立点边索引。
labelDetails 否 Boolean 是否返回不同label下点边的数目信息,默认为false。为true时,返回不同label的点边数目。 请求示例 查询图的点数和边数等概要信息,true表示返回不同label的点边数目。 GET http://{SERVER_URL}/ges/v1
查询schema 查看图的元数据,元数据中包含了标签(Label)和属性(Property)。 查询schema的具体操作步骤如下: 登录管理控制台。 在左侧导航栏中选择“图管理”,单击图管理操作列中的“更多 > 查询schema”,会弹出一个窗口显示当前图的元数据包含的标签(Label)。
基本概念 点 图数据模型中的点代表实体。如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 Gremlin Gremlin是Apache
参数类型 描述 X-Auth-Token 是 String 用户Token。 用于获取操作API的权限。获取方法请参见获取Token接口,响应消息头中X-Subject-Token的值即为Token。 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 graph
用户在实现UserPregelAlgorithm中的方法init和compute时主要依赖于PregelContext对象,该对象提供如下API: 表1 PregelContext API 方法和属性 描述 说明 ext_id(nid)->int 获取当前点的用户自定义外部ID(只支持可转化为int类型的ID) 图数据(值、拓扑)基本操作。
Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/Q。每个节点出发生成多个随机步,反映出网络的结构信息。 适用场景
Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联度算法(Degree Correlation)适用于衡量图的结构特性场景。 参数说明 无。 示例 单击运行,计算图的度数关联度,JSON结果会展示在查询结果区。