检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
除了用户自行发布的数据集,平台还提供了从AI Gallery中订阅数据资产的功能。AI Gallery提供了模型、数据集、AI应用等AI数字资产的共享,为企业级或个人开发者等群体,提供安全、开放的共享及交易环节。 发布数据资产至AI Gallery 登录ModelArts Stud
与其他服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
包年/包月和按需计费模式是否支持互相切换 包年/包月和按需计费模式支持互相切换: 盘古大模型提供包周期计费、按需计费两种计费模式,两种计费模式可通过重新订购互相切换。 例如,退订训练单元的包周期资源后,可重新订购训练单元的按需计费,即可完成切换。 父主题: 计费FAQ
用于配置大模型的输出多样性。 包含取值: 精确的:模型的输出内容严格遵循指令要求,可能会反复讨论某个主题,或频繁出现相同词汇。 平衡的:平衡模型输出的随机性和准确性。 创意性的:模型输出内容更具多样性和创新性,某些场景下可能会偏离主旨。 自定义:自定义大模型输出的温度和核采样值,生成符合预期的输出。
同一资源是否同时支持包年/包月和按需计费两种模式 盘古大模型的模型订阅、数据托管单元、推理单元默认采用包周期计费。 数据智算单元、数据通算单元默认采用按需计费。 训练单元采用包周期和按需计费两种方式。 两种计费方式不能共存,只支持按照一种计费方式进行订购。 父主题: 计费FAQ
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、结构和语言的理
己的需求选取合适的大模型相关服务和产品,方便地构建自己的模型和应用。 数据工程工具链 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、数据合成、数据标注、数据评估、数据配比、数据流通和管理等功能。 该工具
如何利用提示词提高大模型在难度较高推理任务中的准确率 可以通过思维链的方式提高大模型在复杂推理任务中的准确率。 思维链是一种通过分步骤推理来提升大模型在复杂任务中表现的方法。通过引导模型思考问题的过程,可以使其在推理任务中得到更高的准确性,尤其是在涉及多步推理和复杂逻辑关系的任务中。 具体做法如下:
通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通过横向或纵向评估评测集的方式来验证模型效果。
其中,意图的内容为针对该场景的描述语句或关键词,同时也将作为大模型进行推理和分类的依据,数量为2 ~ 5个。 在“高级配置”中配置提示词。单击“确定”,完成参数配置。 图6 意图识别节点参数配置 配置“提示器”节点。 鼠标拖动左侧“提问器”节点至编排页面,并连接“意图识别”的“文本翻
华为云:负责云服务自身的安全,提供安全的云。华为云的安全责任在于保障其所提供的IaaS、PaaS和SaaS类云服务自身的安全,涵盖华为云数据中心的物理环境设施和运行其上的基础服务、平台服务、应用服务等。这不仅包括华为云基础设施和各项云服务技术的安全功能和性能本身,也包括运维运营安全,以及更广义的安全合规遵从。
示例如下: 去除“参考文献”以及之后的内容:\n参考文献[\s\S]* 针对pdf的内容,去除“0 引言”之前的内容,引言之前的内容与知识无关:[\s\S]{0,10000}0 引言 针对pdf的内容,去除“1.1Java简介”之前的与知识无关的内容:[\s\S]{0,10000}
提示词工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为示例,以
当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第三轮的回答。以下给出了几条多轮问答的数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。 A:你可以做什么? B:我可以做很多事情,比如xxxx
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场
强训练模型的多样性和泛化能力。 标注数据集 为无标签数据集添加准确的标签,确保模型训练所需的高质量数据。平台支持人工标注和AI预标注两种方式,用户可根据需求选择合适的标注方式。数据标注的质量直接影响模型的训练效果和精度。 发布数据集 评估数据集 平台预置了多种数据类型的基础评估标
高。 API Key鉴权:通过唯一的API Key来认证应用之间的访问权限,可以使用Header鉴权或Query鉴权的方式,需要提供密钥鉴权参数名和密钥值,安全性较低。 请求头 插件服务的请求头。添加请求的数据格式等说明,敏感信息请通过权限校验的方式实现。 自定义插件使用HTTP
着深远的影响。它是重要的水资源,提供了大量的饮用水和灌溉水。同时,长江也是中国重要的内河航道,对于货物运输和经济发展具有重要作用。长江中的鱼类种类繁多,是中国淡水渔业的重要基地之一。长江中的典型鱼类包括:1. **中华鲟**:这是一种生活在长江中上游的大型鱼类,以其巨大的体型和古
况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。
用、监管有力的制度,并加强对专项资金的监督和管理。严格控制专项资金的流向和使用范围,严禁有过度功能的行为,坚决杜绝虚假、虚报和恶意投资,建立完善的监督管理制度,加强随时的监督和核查,确保专项资金使用的规范化、严格化、透明化、便结算。”问题:在福田区社会建设专项资金的使用过程中,如