检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
重启训练作业,导致训练周期长,而无条件自动重启可以避免这类问题。无条件自动重启是指当训练作业失败时,不管什么原因系统都会自动重启训练作业,提高训练成功率和提升作业的稳定性。为了避免无效重启浪费算力资源,系统最多只支持连续无条件重启3次。 为了避免丢失训练进度、浪费算力,开启此功能
由于一般新训练模型准确率都会从很低的值开始慢慢上升,但是Fine Tune能够在比较少的迭代次数之后得到一个比较好的效果。Fine Tune的好处在于不用完全重新训练模型,从而提高效率,在数据量不是很大的情况下,Fine Tune会是一个比较好的选择。 moxing.tensorflow包含所有的接口,对Tensor
提供多种数据接入方式,支持用户从OBS,MRS,DLI以及DWS等服务导入用户的数据。 提供18+数据增强算子,帮助用户扩增数据,增加训练用的数据量。 帮助用户提高数据的质量。 提供图像、文本、音频、视频等多种格式数据的预览,帮助用户识别数据质量。 提供对数据进行多维筛选的能力,用户可以根据样本属性、标注信息等进行样本筛选。
l_sft_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。c
是,优化代码,等待作业运行正常。 否,提高训练作业使用的资源规格或者联系技术支持。 重启训练作业,使用CloudShell登录训练容器监控内存指标,确认是否有突发性的内存增加现象。 是,排查内存突发增加的时间点附近的训练作业日志,优化对应的代码逻辑,减少内存申请。 否,提高训练作业使用的资源规格或者联系技术支持。
人工标注:用户创建单人标注作业,对数据进行手工标注。 智能标注:在标注一定量的数据情况下,用户可以通过启动智能标注任务对数据进行自动标注,提高标注的效率。 团队标注:对于大批量的数据,用户可以通过创建团队标注作业,进行多人协同标注。 人工标注 对于不同类型的数据,用户可以选择不同
模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它
要求。 可扩展性:随着模型的不断训练和优化,系统能够适应不断变化的新闻内容和分类需求。 降低人力成本:减少人工分类的工作量,降低人力成本,提高工作效率。 操作步骤 准备数据集。获取新闻数据集,并上传到OBS。 下载新闻数据集。 本文原始数据集来源:https://github.c
模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预
模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预
模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预
由于大模型通常基于静态数据集训练,不具备实时信息。Function Calling允许模型访问最新的数据,提供更准确、更及时的回答。 提高准确性 在需要精确计算或特定领域知识时,大模型可以通过调用专门的函数来提高回答的准确性,例如调用数学计算函数、翻译服务或专业知识库。 支持模型 支持Qwen2.5系列预置服务:
如何关闭Mox的warmup 问题现象 训练作业mox的Tensorflow版本在运行的时候,会先执行“50steps” 4次,然后才会开始正式运行。 warmup即先用一个小的学习率训练几个epoch(warmup),由于网络的参数是随机初始化的,如果一开始就采用较大的学习率会出现数值不稳定的问题,这是使用warm
DeepSpeed是一个开源库,用于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示训练类型。可选择值:[pt、sf、rm、ppo],pt代表预训练,sft代表指令监督微调,rm代表奖励模型训练,ppo代表PPO训练。
资源节省:在大模型中引入LoRA,可以减少模型需要更新的参数量,从而节省NPU内存并提高推理速度。 轻量化适配:无需改变原始模型结构,通过低秩矩阵的调整即可适配不同任务。 多任务并行:支持同时加载多个LoRA模块,使得VLLM可以在不同任务间快速切换,提高多任务推理的效率。 约束限制 multi-lora特性不能和Chunked
通过batch进一步切分成微batch, 网络层在多个设备上的特殊安排和巧妙的前向后向计算调度,可以最大程度减小设备等待(计算空泡),从而提高训练效率。 学习率预热 不同的学习率调度器(决定什么阶段用多大的学习率)有不同的学习率调度相关超参,例如线性调度可以选择从一个初始学习率l
模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预
_lora_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。c
和编译的时间。可通过线下wheel包方式安装运行环境依赖。线下wheel包安装,需确保wheel包与模型文件放在同一目录。 优化模型代码,提高构建模型镜像的编译效率。 父主题: 模型管理
/scripts/llama2/0_pl_sft_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。c