检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
清洗算子功能介绍 数据清洗是提高数据质量的重要环节,包括去除异常的字符、去除表情符号和去除个人敏感内容等,经过清洗的数据可以提升训练阶段的稳定性。 平台支持通过以下清洗能力: 表1 清洗算子说明 算子类型 功能 说明 数据转换 全角转半角 将文本中的所有全角字符转换成半角字符。 中文繁简体互转
压缩技术在保持相同QPS目标的情况下,降低推理时的显存占用。 采用INT8的压缩方式,INT8量化可以显著减小模型的存储大小与降低功耗,并提高计算速度。 模型经过量化压缩后,不支持评估操作,但可以进行部署操作。 创建模型压缩任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发
盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
布,那么可以使用较大的学习率和较大的批量大小,以提高训练效率。如果微调数据量相对较少,则可以使用较小的学习率和较小的数据批量大小,避免过拟合。 通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习率和较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。
户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供一些基本信息,大模型就能生成需求的文案,从而大大提高文案的质量和效率。 除了短视频风格的口播文案,营销文案还可以根据需求生成不同风格的文案,如小红书风格、知乎风格,或爆款标题等。 选择基模型/基础功能模型
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确且更具针对性的输出,从而提高模型在特定任务上的性能。在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造,如果提示词模板满足不了使用需求,可再单独创建。 提示词模板可以在平台“应用开发
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出,提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词的统一管理。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模型。此类大模型因具备更强的泛化能力,能够沉淀行业经验,并更高效、准确地获取信息。
从而深刻把握行业特性。这种快速学习与适应能力,为各行业企业和机构带来了极大的便利。它们可以根据具体需求,利用盘古大模型构建或优化业务流程,提高工作效率,降低运营成本,并为客户提供更精准、个性化的服务。 模型效果优秀 经过海量数据训练,盘古大模型在各种自然语言处理任务中展现出卓越的
一般来说,批大小越大,训练速度越快,但会占用更多的内存资源,且可能导致收敛困难或过拟合。批大小越小,训练速度越慢,但会减少内存消耗,且可能提高泛化能力。因此,批大小需要根据数据集的规模和特点,以及模型的复杂度和性能进行调整。同时,批大小还与学习率相关。学习率是指每次更新参数时,沿
言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊的查询,也能提供准确的响应。这种对话问答方式提高了知识获取效率,使智能客服系统更加人性化和有温度。 此外,盘古大模型还能够根据用户的行为和反馈不断学习和优化,进一步提升服务能力。它能识别
自定义模型 如果使用的模型不是盘古或者兼容OpenAI-API的开源模型,如,闭源模型或者裸机部署的自定义推理服务,可以通过继承AbstractLLM自定义一个模型,示例代码如下: @Slf4j public class CustomLLM extends AbstractLLM<LLMResp>
一般来说,批大小越大,训练速度越快,但会占用更多的内存资源,且可能导致收敛困难或过拟合。批大小越小,训练速度越慢,但会减少内存消耗,且可能提高泛化能力。因此,批大小需要根据数据集的规模和特点,以及模型的复杂度和性能进行调整。同时,批大小还与学习率相关。学习率是指每次更新参数时,沿
存在惩罚,增加模型谈论新主题的可能性 private double frequencyPenalty; // 频率惩罚,降低模型重复的可能性,提高文本多样性、创造型 private int bestOf; // 服务侧生成优选的回答数 private boolean stream;
过规范操作和审批的,必须严格按照使用资金的监管属性,统一管理各类资金,精细、规范、稳健。在内部管理上,应加强信息通报、关联跨部门协调机制,提高管理精神与管理水平,优化执行方法,简化管理程序,创造良好的运作环境,以推进社会建设事业的合理发展。"} 数据量级要求:综合三个模块,本场景
持上下文记忆的对话、搜索增强等场景。 Memory(记忆)支持多种不同的存储方式和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。
持上下文记忆的对话、搜索增强等场景。 Memory(记忆)支持多种不同的存储方式和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。
N1 N2 N4 预训练 × × × 微调 √ √ √ 不同系列的模型,对文本长度的处理也各有差异,选择合适的模型能够处理特定长度的文本,从而提高模型的整理效果。 表2 NLP大模型清单 模型类别 模型 token 简介 NLP大模型 盘古-NLP-N1-基础功能模型-32K 部署可选4096、32768
“核采样”参数调小后生成结果2 将“核采样”参数调大,如改为1,保持其他参数不变,单击“重新生成”,再单击“重新生成”,可以看到模型前后两次回复内容的多样性提高。 图5 “核采样”参数调大后生成结果1 图6 “核采样”参数调大后生成结果2 体验预置模型的多轮对话能力 进入“多轮对话”页签,选择模型
“核采样”参数调小后生成结果2 将“核采样”参数调大,如改为1,保持其他参数不变,单击“重新生成”,再单击“重新生成”,可以看到模型前后两次回复内容的多样性提高。 图5 “核采样”参数调大后生成结果1 图6 “核采样”参数调大后生成结果2 体验预置模型的多轮对话能力 进入“多轮对话”页签,选择模型