检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在“待确认”页签中,单击图片展开标注详情,查看图片数据的标注情况,如标签是否准确、目标框位置添加是否准确。如果智能标注结果不准确,建议手工调整标签或目标框,然后单击“确认标注”。完成确认后,重新标注的数据将呈现在“已标注”页签下。 如图1所示的难例,dog标签的目标框位置不准确,使用标注
新版的预置训练引擎默认安装Moxing2.0.0及以上版本。 新版的预置训练引擎统一使用了Python3.7及以上版本。 新版镜像修改了默认的HOME目录,由“/home/work”变为“/home/ma-user”,请注意识别训练代码中是否有“/home/work”的硬编码。 提供预置引擎类型有差
开发者结合实际业务的需求,通过Workflow提供的Python SDK,将ModelArts的能力封装成流水线中的一个个步骤。对于AI开发者来说是非常熟悉的开发模式,而且灵活度极高。Python SDK主要提供以下能力。 开发构建:使用python代码灵活编排构建工作流。 调测:支持debug以及run两种模式,
Object 数据源信息,详细请见表3。 width Long 图片长度。 height Long 图片高度。 depth Long 图片深度。 segmented String 分割。 mask_source String 图像分割得到的mask文件的云存储路径,目前只支持PNG格式。
包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。 pip install -r pip-requirements.txt 仅使用预置框架创建的训练作业支持在训练模型时引用依赖包。
步骤2:安装Python插件以及配置入参 打开VS Code工具,单击“Extensions”,搜索python,然后单击“Install”。 图3 安装Python 输入Ctrl+Shirt+P,搜索“python:select interpreter”,选择Python解释器。 图4
构建成功的镜像注册到镜像管理模块注册的镜像,如图8所示。 图8 变更镜像 启动变更后的Notebook,并打开。进入Terminal运行界面,在工作目录,运行启动脚本run.sh,并预测模型。基础镜像中默认提供了run.sh作为启动脚本。 图9 运行启动脚本 上传一张预测图片(手写数字图片)到Notebook中。
LTS cuda:10.1.243 cudnn:7.6.5.32 Python解释器路径及版本:/home/ma-user/anaconda3/envs/TensorFlow-2.1/bin/python, python 3.7.10 三方包安装路径:/home/ma-user/an
否 List python包的下载源。 pip_packages 否 List conda虚拟环境需要使用的python包,如tensorflow,pillow等。 conda_packages 否 List conda虚拟环境需要使用的conda包,如指定python版本。 表4
resnet │ ├── model 必选:固定子目录名称,用于放置模型相关文件 │ │ ├──<<自定义Python包>> 可选:用户自有的Python包,在模型推理代码中可以直接引用 │ │ ├──mnist_mlp.pt 必选,pytorch模型保存文件,保
下载至OBS桶位置(数据集输入位置):选择一个空目录用来存储下载的数据集。 数据集输出位置:数据集输出位置的OBS路径,此位置会存放输出的标注信息等文件,此位置不能和OBS数据源中的文件路径相同或为其子目录,请确保您的OBS文件名称以字母、数字或下划线命名。 图2 数据来源选择AI
模型算法,表示该模型的用途,由模型开发者填写,以便使用者理解该模型的用途。只能以英文字母开头,不能包含中文以及&!'\"<>=,不超过36个字符。常见的模型算法有image_classification(图像分类)、object_detection(物体检测)、predict_analysis(预测分析)等。
--name:该参数为新环境名字,可以自定义一个,此处以py310举例。 python=新环境Python版本 # 完成后输入如下命令激活新环境 conda activate py310 激活新conda环境后控制台显示(py310)即为切换成功,如下图所示。 图1 激活新conda环境 从github拉取Wav2Lip代码。
表示数据源所在目录。 filename 是 被标注文件的文件名。 size 是 表示图像的像素信息。 width:必选字段,图片的宽度。 height:必选字段,图片的高度。 depth:必选字段,图片的通道数。 segmented 是 表示是否用于分割。 object 是 表示物
详细数据以及标注信息。如需了解标注结果的存储路径,请参见如下说明。 背景说明 针对ModelArts中的数据集,在创建数据集时,需指定“数据集输入位置”和“数据集输出位置”。两个参数填写的均是OBS路径。 “数据集输入位置”即原始数据存储的OBS路径。 “数据集输出位置”,指在M
csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行
csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行
数据属性:筛选数据的来源,选择“全部”或“推理”。 图1 筛选条件 查看已标注图片 在标注任务详情页,单击“已标注”页签,您可以查看已完成标注的图片列表。图片缩略图下方默认呈现其对应的标签,您也可以勾选图片,在右侧的“选中文件标签”中了解当前图片的标签信息。 查看已标注文本 在数据集详情
environ['DEVICE_ID'] = "5" … 最后执行python脚本进行推理: #shell python mslite_pipeline.py 图2 执行推理脚本 图3 MindSpore Lite pipeline输出的结果图片 父主题: 应用迁移
个 ID、一个图像路径(或图像列表)和一个对话列表。然后,将数据样本保存在 JSON 文件中。 对于视觉语言任务,您必须提供占位符(例如<image>或<image_XX>)来定义在对话中插入图像嵌入的位置。如果没有提供占位符,则图像将默认放置在对话的前面。 单幅图像示例 如果您