检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
folders error. 请检查OBS服务是否正常,是否可以访问OBS桶数据。 数据清洗 dataset is not online. 数据清洗使用的数据集未上线,请先执行上线操作。 invalid obs path. 请检查数据集对应的OBS路径是否有效,是否可正常访问。 数据标注
单击操作列的“删除”,可删除不需要的数据集。 如果需要恢复删除的数据集,可单击右上角“显示已删除数据”,被删除的数据集将在列表显示,可将数据集恢复。 如果需要彻底删除数据集,可单击数据集名称进入详情页,确认数据集内容后彻底删除该数据集。 删除原始数据集属于高危操作,删除前,请确保该数据集不再使用。 父主题:
断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的损失值。值越小,意味着模型对验证集数据的泛化能力越好。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。 对于训练异常或失败的任务可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请
单击操作列的“删除”,可删除不需要的数据集。 如果需要恢复删除的数据集,可单击右上角“显示已删除数据”,被删除的数据集将在列表显示,可将数据集恢复。 如果需要彻底删除数据集,可单击数据集名称进入详情页,确认数据集内容后彻底删除该数据集。 删除原始数据集属于高危操作,删除前,请确保该数据集不再使用。 父主题:
”。 如图1,展示了预训练文本类数据集的合成指令参数配置示例,该合成任务实现利用预训练文本生成问答对。 图1 预训练文本类数据集合成指令参数配置示例 其中,各参数介绍如下: 变量取值:输入参数的各个变量取值。取值可以是数据集中的字段变量,也可以自定义变量值。 保存至任务输出参数(
配比数据集 数据配比是将多个数据集按特定比例组合并发布为“发布数据集”的过程。通过合理的配比,确保数据集的多样性、平衡性和代表性,避免因数据分布不均而引发的问题。 流通数据集 数据流通是将单个数据集发布为特定格式的“发布数据集”,用于后续模型训练等操作。 平台支持发布的数据集格式为默认格式、盘古格式。
user。 如果需要模型以某个人设形象回答问题,可以将role参数设置为system。不使用人设时,可设置为user。在一次会话请求中,人设只需要设置一次。 content表示对话的内容,可以是任意文本。 messages参数可以帮助模型根据对话的上下文生成合适的回复。 数组长度:1
配比文本类数据集 数据配比是将多个数据集按照特定比例关系组合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至流通文本类数据集。 创建文本类数据集配比任务 创建文本类数据集配比任务步骤如下: 登录ModelArts St
使用数据工程构建预测大模型数据集 预测大模型支持接入的数据集类型 盘古预测大模型仅支持接入预测类数据集,不同模型所需数据见表1,该数据集格式要求请参见预测类数据集格式要求。 表1 预测大模型与数据集类型对应关系 基模型 模型分类 数据集内容 文件格式 预测大模型 时序预测模型 时序数据
选择“自动评测”。 评测规则 选择“基于规则”。 评测数据集 评测模板:使用预置的专业数据集进行评测。 单个评测集:由用户指定评测指标(F1分数、准去率、BLEU、Rouge)并上传评测数据集进行评测。 选择“单个评测集”时需要上传待评测数据集。 评测结果存储位置 模型评测结果的存储位置。 基本信息
数据评估:数据评估通过对数据集进行系统的质量检查,依据评估标准评估数据的多个维度,旨在发现潜在问题并加以解决。 数据配比:将多个数据集按照特定比例关系组合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 数据流通:将单个数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。
文本类数据集格式要求 ModelArts Studio大模型开发平台支持创建文本类数据集,创建时可导入多种形式的数据,具体格式要求详见表1。 表1 文本类数据集格式要求 文件内容 文件格式 文件要求 文档 txt、mobi、epub、docx、pdf 单个文件大小不超过50GB,文件数量最多1000个。
的配置选项。用户可以根据实际需求选择合适的模型架构,并结合不同的训练数据进行精细化训练。平台支持分布式训练,能够处理大规模数据集,从而帮助用户快速提升模型性能。 模型评测:为了确保模型的实际应用效果,平台提供了多维度的模型评测功能。通过自动化的评测机制,用户可以在训练过程中持续监
储和管理能力,为大模型训练提供高质量的数据支撑。 支持区域: 西南-贵阳一 数据工程介绍 数据工程使用流程 数据集格式要求 导入数据至盘古平台 加工数据集 发布数据集 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模
指定预测目标变量的列名,仅支持单目标变量预测。格式为["列名"],默认设置为[],表示选择最后一列作为预测目标变量。 训练集&验证集比例 将数据集划分为训练集和验证集。填写验证集的比例(默认为 0.2,即训练集占0.8,验证集占0.2)。可选比例包括0.1、0.2、0.3、0.4。 基模型算法池 对于异常检测模型
着重要作用。用户可以通过提示词工程来提高大语言模型的安全性,还可以赋能大语言模型,如借助专业领域知识和外部工具来增强大语言模型的能力。 提示词基本要素 您可以通过简单的提示词(Prompt)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的
ctId> <version>3.1.103</version> </dependency> Python 使用pip安装。 #回显Successfully installed xxx表示安装成功 # 安装核心库 pip install huaweicloudsdkcore
与大模型节点相连的后序节点可以直接引用该输出。 参数类型:输出参数的类型,可选String、Integer、Number、Boolean。 描述:对于该输出参数的描述。 输出格式:支持输出的格式包括文本、Markdown、JSON。 添加分支 可以添加新的分支ELSE IF,新分支的配置方式与IF分支相同。
Agent开发 Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户):
CV大模型训练流程与选择建议 CV大模型训练流程介绍 目前,CV大模型支持微调训练。 微调阶段:微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估