检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如:
大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原
数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或
单击“完成创建”以创建评估标准。 评估标准创建完成后可以在“人工评估标准”页面查看创建的评估标准,并支持编辑与删除操作。 创建文本类数据集评估任务 平台仅支持对“加工数据集”执行评估操作。 创建文本类数据集评估任务前,请参考加工文本类数据集,生成一个“加工数据集”。 创建文本类数据集评估任务步骤如下: 登录ModelArts
选择“微调”。 基础模型 选择所需微调的基础模型。 训练参数 数据集 训练数据集。 自定义L1预训练模型目录 自定义预训练模型所在的OBS路径。 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 是否使用自定义L1预训练模型 是否使用自定义预训练模型进行
满足您的使用要求时,可以进行预训练或微调。预训练、微调操作的适用场景如下: 预训练:训练用于添加新的高空层次、高空变量或表面变量。如果您需要在现有模型中引入新要素,需要使用训练(重新训练模型)。在重训配置参数时,您可以选择新要素进行训练。请注意,所选的数据集必须包含您想要添加的新
提示词撰写完成后,可以通过输入具体的变量值,组成完整的提示词,查看不同提示词在模型中的使用效果。 在撰写提示词页面,找到页面右侧变量输入区域,在输入框中输入具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel
据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持文本类数据集的清洗操作,分为数据提取、数据转换、数据过滤三类,文本类加工算子能力清单见表1。 表1 文本类清洗算子能力清单 算子分类 算子名称 算子描述
单击“完成创建”以创建评估标准。 评估标准创建完成后可以在“人工评估标准”页面查看创建的评估标准,并支持编辑与删除操作。 创建视频类数据集评估任务 平台仅支持对“加工数据集”执行评估操作。 创建视频类数据集评估任务前,请参考加工视频类数据集,生成一个“加工数据集”。 创建视频类数据集评估任务步骤如下: 登录ModelArts
指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所有参数进行更新。这种方法可以显著减少微调所需的计算资源和时间,同时保持或接近模型的最佳性能。 过拟合 过拟合是指为了得到一
单击“完成创建”以创建评估标准。 评估标准创建完成后可以在“人工评估标准”页面查看创建的评估标准,并支持编辑与删除操作。 创建图片类数据集评估任务 平台仅支持对“加工数据集”执行评估操作。 创建图片类数据集评估任务前,请参考加工图片类数据集,生成一个“加工数据集”。 创建图片类数据集评估任务步骤如下: 登录ModelArts
能力更强,更专业。 统一管,资产管理“全” ModelArts Studio大模型开发平台数据、模型、Agent应用在统一的入口进行管理,可以快速的掌握资产的使用情况、版本情况和溯源信息等。 海量训练数据 盘古大模型依托海量且多样化的训练数据,涵盖从日常对话到专业领域的广泛内容,
、过滤、转换、打标签和评分等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的清洗操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。 表1 视频类清洗算子能力清单 算子分类 算子名称 算子描述
成高质量的训练数据。 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类清洗算子能力清单 算子分类 算子名称 算子描述 科学计算 气象预处理 将二进制格式的气象数据文件转换成结构化JSON数据。 父主题: 数据集清洗算子介绍
型”中进行选择。 数据配置 训练数据 选择数据集中已发布的数据集,这里数据集需为再分析类型数据,同时需要完成加工作业,加工时需选择气象预处理算子。 训练集 选择训练数据中的部分时间数据,训练数据集尽可能多一些。 验证集 选择验证集中的部分时间数据,验证集数据不能跟训练集数据重合。
零样本 对于无样本的任务,可以采用让模型分步思考的方法来分解复杂推理或数学任务,在问题的结尾可以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相
微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化。 针对预训练阶段,还可以继续进行训练,这一过程称为增量预训练。增量预训练是在已经完成
气象类数据集格式要求 ModelArts Studio大模型开发平台支持导入气象类数据集,该数据集当前包括海洋气象数据。 海洋气象数据通常来源于气象再分析。气象再分析是通过现代气象模型和数据同化技术,重新处理历史观测数据,生成高质量的气象记录。这些数据既可以覆盖全球范围,也可以针对特
管理和高效操作的基础,便于用户实现统一查看和操作管理。 数据资产:用户已发布的数据集将作为数据资产存放在空间资产中。用户可以查看数据集的详细信息,包括数据格式、大小、配比比例等。同时,平台支持数据集的删除等管理操作,使用户能够统一管理数据集资源,以便在模型训练和分析时灵活调用,确保数据资产的规范性与安全性。
数据资产介绍 数据资产是指在平台中被纳入管理、存储并可供使用的数据集。 数据资产包含以下两种形式: 用户自行发布的数据集。 用户可以通过“数据工程 > 数据发布 > 数据流通”功能将数据集发布为数据资产。发布的数据集支持查看详细信息、编辑、删除以及发布至AI Gallery等操作。