检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
nts。 训练参数 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 数据批量大小 数据集进行分批读取训练,设定每个批次数据的大小。 通常情况下,较大的数据批量可以使梯度更加稳定,从而有利于模型的收敛。然而,较大的数据批量也会占用更多的显存资源,这可能
协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单 API 功能 操作指导 NLP大模型-文本对话 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 文本对话 科学计算大模型-气象/降水模型 支持创建推理作业并查询推理作业详情。
评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLE
模型学习数据的迭代步数就越多,可以学得更深入,但过高会导致过拟合;训练轮数越小,模型学习数据的迭代步数就越少,过低则会导致欠拟合。 您可根据任务难度和数据规模进行调整。一般来说,如果目标任务的难度较大或数据量级很小,可以使用较大的训练轮数,反之可以使用较小的训练轮数。 如果您没有
如何利用提示词提高大模型在难度较高推理任务中的准确率 可以通过思维链的方式提高大模型在复杂推理任务中的准确率。 思维链是一种通过分步骤推理来提升大模型在复杂任务中表现的方法。通过引导模型思考问题的过程,可以使其在推理任务中得到更高的准确性,尤其是在涉及多步推理和复杂逻辑关系的任务中。
数据配比:平台支持对文本、图片类数据进行数据配比。用户在勾选数据集时可以勾选多条,通过调整不同来源或类型数据的比例,以优化模型训练过程。通过数据配比可以确保模型能够更全面地学习和理解数据的多样性,提高模型的泛化能力和性能。 数据流通:平台支持数据集配比、拆分发布。用户可以将处理后的数据集发布为多种格式,包括默认格式
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
升模型性能。 数据配比 数据配比是将多个数据集按特定比例组合并发布为“发布数据集”的过程。通过合理的配比,确保数据集的多样性、平衡性和代表性,避免因数据分布不均而引发的问题。 数据流通 数据流通是将单个数据集发布为特定格式的“发布数据集”,用于后续模型训练等操作。支持的发布格式为
如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化
Agent开发平台介绍 Agent开发平台简介 Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建AI应用,加速领域和行业AI应用的落地。
模型能够“回忆”并运用已学习的知识和指令。 不同模型间效果差异。 由于不同厂商采用的训练策略和数据集差异,同一提示词在不同模型上的效果可能大不相同。由于不同厂商采用的训练策略和数据集差异,同一提示词在不同模型上的效果可能大不相同。例如,某些模型可能在处理特定领域的数据时表现得更好
选择导入的数据 填写“数据集名称”和“描述”,可选择填写“拓展信息”。 拓展信息包括“数据集属性”与“数据集版权”: 数据集属性。可以给数据集添加行业、语言和自定义信息。 数据集版权。训练模型的数据集除用户自行构建外,也可能会使用开源的数据集。数据集版权功能主要用于记录和管理数据集的版权信息,
加工后的数据集可在“数据工程 > 数据加工 > 加工数据集”中查看。 审核标注后的文本类数据集 如果在创建文本类数据集标注任务时启用了标注审核功能,则在完成标注后可以在“标注审核”页面审核标注结果。 创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。
任务管理”页面单击“生成”,生成加工数据集。 加工后的数据集可在“数据工程 > 数据加工 > 加工数据集”中查看。 审核标注后的图片类数据集 如果在创建图片类数据集标注任务时启用了标注审核功能,则在完成标注后可以在“标注审核”页面审核标注结果。 创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。
板 评测指标(自动评测-使用评测模板) 指标说明 评测得分 每个数据集上的得分为模型在当前数据集上的通过率;评测能力项中若有多个数据集则按照数据量的大小计算通过率的加权平均数。 综合能力 综合能力是计算所有数据集通过率的加权平均数。 表3 NLP大模型人工评测指标说明 评测指标(人工评测)
任务管理”页面单击“生成”,生成加工数据集。 加工后的数据集可在“数据工程 > 数据加工 > 加工数据集”中查看。 审核标注后的视频类数据集 如果在创建视频类数据集标注任务时启用了标注审核功能,则在完成标注后可以在“标注审核”页面审核标注结果。 创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。
在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的
业务数据的可获取性 考虑该任务场景的业务数据是否公开可获取。如果该场景的相关数据可以公开获取,说明模型在训练阶段可能已经接触过类似的语料,因此具有一定的理解能力。这时,通过调整提示词通常可以有效引导模型生成合理的回答。 例如,对于一些常见的问答场景(如常见百科问题),由于这些
数据资产:数据资产是指用户在平台上发布的所有数据集。这些数据集会被存储在数据资产中,用户可以随时查看数据集的详细信息,如数据格式、大小、配比比例等,同时平台会自动记录每个数据集的操作历史,例如创建、发布及上线等过程。为了进一步简化管理,平台还支持数据集的删除功能,使用户能够对数据集进行灵活管理和调整。在模
训练、优化、部署与调用等流程。pipeline编排流程可以基于python代码实现,也可以人工模拟每一步的执行情况。检索模块可以使用Elastic Search来搭建,也可以利用外部web搜索引擎。在初步验证大模型效果时,可以假设检索出的文档完全相关,将其与query及特定pro