检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
开启支持APP认证功能 在部署为在线服务时,您可以开启支持APP认证功能。或者针对已部署完成的在线服务,您可以修改服务,开启支持APP认证功能。 登录ModelArts管理控制台,在左侧菜单栏中选择“模型部署 > 在线服务”,进入在线服务管理页面。 开启支持APP认证功能。 在部署为在线服务时
USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下: --host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号
若权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的
如果权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2
ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理
再进行单独计费。由专属资源池进行收费。 Standard中模型部署为服务后如何收费? ModelArts支持将模型按照业务需求部署为服务。训练类型不同,部署后的计费方式不同。 将模型部署为服务时,根据数据集大小评估模型的计算节点个数,根据实际编码情况选择计算模式。 具体计费方式请参见ModelArts产品价格详情。
登录ModelArts管理控制台,在左侧导航栏中选择“模型部署 > 在线服务”,默认进入“在线服务”列表。 单击目标服务名称,进入服务详情页面。 在“在线服务”的详情页面,可以获取该服务的调用地址和输入参数信息。 “API接口公网地址”即在线服务的调用地址。当模型配置文件中apis定义了路径,调用地址
若权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的
推理服务部署 准备推理环境 启动推理服务 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912)
在ModelArts中部署模型时,为什么无法选择Ascend Snt3资源? 由于Ascend Snt3资源有限,当资源售罄后,您在部署上线时,无法选择Ascend Snt3资源(公共资源池)进行推理,即在部署页面中,“Ascend: 1* Snt3 (8GB) | ARM: 3
自定义脚本代码示例 从OBS中导入模型文件创建模型时,模型文件包需符合ModelArts的模型包规范,推理代码和配置文件也需遵循ModelArts的要求。 本章节提供针对常用AI引擎的自定义脚本代码示例(包含推理代码示例)。模型推理代码编写的通用方法及说明请见模型推理代码编写说明。 Tensorflow
通过API接口查询模型详情,model_name返回值出现乱码 问题现象 通过API接口查询模型详情,model_name返回值出现乱码。例如model_name为query_vec_recall_model,但是api接口返回结果是query_vec_recall_model_b。
通过Token认证的方式访问在线服务 如果在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。在集成至生产环境之前,需要对此API进行调测,您可以使用以下方式向在线服务发起预测请求: 方
DeepSeek模型基于ModelArts Lite Server适配MindIE推理部署指导 方案概述 准备权重 部署推理服务 附录:rank_table_file.json文件 附录:config.json文件 附录:部署常见问题 父主题: DeepSeek系列模型推理
如果权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2
如果权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2
ModelArts导入模型时,如何编写模型配置文件中的安装包依赖参数? 问题描述 从OBS中或者从容器镜像中导入模型时,开发者需要编写模型配置文件。模型配置文件描述模型用途、模型计算框架、模型精度、推理代码依赖包以及模型对外API接口。配置文件为JSON格式。配置文件中的“depen
“智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手段进行智能标注,降低人工标注量,帮助用户找到难例。 “预标注”表示选择用户模型管理里面的模型进行智能标注。
较大的模型(如qwen系模型),开启并行可以减少显存占用,以提升推理吞吐量。 export USE_PFA_HIGH_PRECISION_MODE=1 # PFA算子是否使用高精度模式;默认值为0表示不开启。针对Qwen2-7B模型和Qwen2-57b模型,必须开启此配置,否则
py --base-path 大模型权重地址 --draft-path 小模型权重地址 --base-weight-name 大模型包含lm_head的权重文件名 --draft-weight-name 小模型权重文件名 具体可参考Eagle投机小模型训练章节中的步骤五:训练生成权重转换成可以支持vLLM推理的格式。