已找到以下 10000 条记录

AI平台ModelArts

ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
AI平台ModelArts
ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
  • 使用Python实现深度学习模型模型部署与生产环境应用

    使用Flask进行API部署 使用Docker进行容器化部署 在云端部署模型 总结 1. 模型部署简介 1.1 模型部署概念 模型部署是将训练好的机器学习深度学习模型集成到应用程序或服务中,使其能够在生产环境中运行并提供预测服务的过程。部署模型需要考虑以下几个方面: 模型保存与加载

    作者: Echo_Wish
    发表时间: 2024-07-07 13:36:30
    193
    0
  • 基于flask和网页端部署yolo自训练模型

    @Author: Runsen 基于flask和网页端部署yolo自训练模型 关于yolov5模型flask部署, 需要通过torch.hub.load 加载yolov5 自定义的模型,source需要设置local if opt.model ==

    作者: 毛利
    发表时间: 2022-08-06 14:19:27
    452
    0
  • 使用Python实现深度学习模型:跨平台模型移植与部署

    引言 随着深度学习技术的快速发展,模型的跨平台移植与部署变得越来越重要。无论是将模型从开发环境移植到生产环境,还是在不同的硬件平台上运行,跨平台部署都能显著提高模型的实用性和可扩展性。本文将介绍如何使用Python实现深度学习模型的跨平台移植与部署,并提供详细的代码示例。 所需工具

    作者: Echo_Wish
    发表时间: 2024-07-10 09:46:23
    122
    0
  • 深度学习模型优化

    项目实习生 深度学习模型优化 深度学习模型优化 领域方向:人工智能 工作地点: 深圳 深度学习模型优化 人工智能 深圳 项目简介 为AI类应用深度学习模型研发优化技术,包括神经网络结构设计,NAS搜索算法,训练算法优化,AI模型编译优化等。 岗位职责 负责调研深度学习模型优化技术业

  • ModelArts模型部署方式总结

    设备进行部署。第二种方式是可以通过模型转换转换成支持Ascend的模型,从而可以通过HiLens部署。 二.自动学习(1)用户自行部署:自动学习模型用户无法下载,无法自行部署。(2)部署在线服务:自动学习原生支持在线服务部署,可在自动学习页面直接部署成在线服务或者在模型管理里找到

    作者: bluehalo
    发表时间: 2020-05-30 16:06:33
    13025
    0
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习模型,但是训练好的深度学习模型是怎么部署

    作者: 初学者7000
    878
    3
  • 基于PyTorch NPU快速部署开源大模型

    快速推理 内置开源模型,serverless化调用服务API快速配置模型,自动部署在线服务,实现快速推理。 一键部署 一键轻松部署,即可完成函数工作流、统一身份认证服务 IAM资源创建,帮助用户快速搭建基于Standard适配PyTorch NPU的推理系统。

  • Standard模型部署 - AI开发平台ModelArts

    Standard模型部署 ModelArts Standard提供模型、服务管理能力,支持多厂商多框架多功能的镜像和模型统一纳管。 通常AI模型部署和规模化落地非常复杂。 例如,智慧交通项目中,在获得训练好的模型后,需要部署到云、边、端多种场景。如果在端侧部署,需要一次性部署到不同规格

  • 各个模型深度学习训练加速框架的选择 - AI开发平台ModelArts

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

  • 部署模型

    部署模型部署模型定义了数据的存储位置以及客户与之交互的方式,即用户如何访问数据以及应用程序在何处运行,主要有三种不同的云部署模型:公有云、私有云和混合云。1、公有云这是最常见的部署模型。在此情况下,所有内容都在云提供商的硬件上运行,没有本地硬件。在某些情况下,可通过与其他云用

    作者: 真水无香
    发表时间: 2019-01-31 18:25:00
    7943
    0
  • 使用模型 - CodeArts IDE Online

    Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • 创建和训练模型 - CodeArts IDE Online

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • 深度学习模型编译技术

    前言 深度学习模型的开发周期,包括训练阶段和部署阶段。训练阶段,用户需要收集训练数据,定义自己的模型结构,在CPU或者GPU硬件上进行训练,这个过程反复优化,直到训练出满意精度的模型。有了模型之后,我们需要将模型服务部署运行,我们期望服务延迟越低越好,吞吐越高越好。这里会从编译优

    作者: ross.xw
    发表时间: 2022-05-06 03:19:25
    1373
    0
  • AI平台ModelArts入门

    口罩检测(使用新版自动学习实现物体检测应用) 该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。 一键完成商超商品识别模型部署 本教程以“商超商品识别”模型为例,完成从AI

  • 模型压缩部署概述

    一,模型在线部署 深度学习和计算机视觉方向除了算法训练/研究,还有两个重要的方向: 模型压缩(模型优化、量化)、模型部署模型转换、后端功能SDK开发)。所谓模型部署,即将算法研究员训练出的模型部署到具体的端边云芯片平台上,并完成特定业务的视频结构化应用开发。 现阶段的平台主要分为云平台(如英伟达

    作者: 嵌入式视觉
    发表时间: 2023-01-31 11:07:03
    150
    0
  • 部署模型 - 软件建模 CodeArts Modeling

    建模步骤 创建部署模型。 创建新的部署模型图或者在已有的部署模型图中进行画图设计,如果部署模型场景较多,可根据实际情况将内容进行拆分,按实际部署场景创建多个部署模型图。 建立交付元素与部署元素的部署关系。 从工具箱拖入部署元素创建到部署模型图中,描述部署场景,再将交付模型中定义的打包交付

  • 部署模型 - 软件建模 CodeArts Modeling

    部署模型的基础构造型与自定义构造型元素才认定为部署元素)。 在部署模型图上创建出来的部署元素; 引用到部署模型中的部署元素(包含关联空间中的引用的部署元素); 如何检查 查询部署模型图内元素类型为架构方案配置构造型的所有元素,查询基于模型图构出的部署模型架构树。 正确示例 每个部署元素都有连线关系和上下级关系(包含关系)。

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 - CodeArts IDE Online

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

  • 华为云hilens

    择用其完成开发调试,最后通过HiLens平台部署到设备上运行和管理。 开发流程 数据预处理和模型训练 用户在华为云ModelArts平台或线下,进行数据预处理、算法开发和模型训练,得到模型后,根据需要部署的设备芯片类型,完成对应的模型转换。 AI应用开发 开发者可以选择基于Mod

  • AI平台ModelArts资源

    AI平台ModelArts资源 AI平台ModelArts资源 面向开发者的一站式AI开发平台,可快速创建和部署模型,管理全周期AI工作流,助力千行百业智能升级 面向开发者的一站式AI开发平台,可快速创建和部署模型,管理全周期AI工作流,助力千行百业智能升级 购买 控制台 文档 资源与工具 资源与工具

  • 概要 - CodeArts IDE Online

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型