检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
一,模型在线部署 深度学习和计算机视觉方向除了算法训练/研究,还有两个重要的方向: 模型压缩(模型优化、量化)、模型部署(模型转换、后端功能SDK开发)。所谓模型部署,即将算法研究员训练出的模型部署到具体的端边云芯片平台上,并完成特定业务的视频结构化应用开发。 现阶段的平台主要分为云平台(如英伟达
前言 深度学习模型的开发周期,包括训练阶段和部署阶段。训练阶段,用户需要收集训练数据,定义自己的模型结构,在CPU或者GPU硬件上进行训练,这个过程反复优化,直到训练出满意精度的模型。有了模型之后,我们需要将模型服务部署运行,我们期望服务延迟越低越好,吞吐越高越好。这里会从编译优
部署模型的基础构造型与自定义构造型元素才认定为部署元素)。 在部署模型图上创建出来的部署元素; 引用到部署模型中的部署元素(包含关联空间中的引用的部署元素); 如何检查 查询部署模型图内元素类型为架构方案配置构造型的所有元素,查询基于模型图构出的部署模型架构树。 正确示例 每个部署元素都有连线关系和上下级关系(包含关系)。
如果提示未开通则根据提示跳转至开通页面完成服务开通。 进入“基础配置”页面,选择Python技术栈,CPU架构选择X86计算,CPU/内存选择2U4G,单击“下一步”。 进入“工程配置”页面,选择不创建工程,然后单击“确定”,完成实例创建。 安装TensorFlow 进入CodeArts IDE
摘要:本文将介绍如何在华为云上使用容器化技术部署深度学习模型。我们将探讨使用华为云容器服务和深度学习框架TensorFlow来构建一个容器化的深度学习环境,并提供详细的实例代码和步骤。 深度学习模型的训练和部署通常需要大量的计算资源和依赖项管理。使用容器化技术可以帮助我们更好地管理和部署深度学习模型,提高开发效
创建workdir mkdir flask-demo cd flask-demo # 创建工程文件 touch flask-demo/start.py flask-demo/Dockerfile flask-demo/requirements.txt flask-demo/gunicorn
引言 随着物联网(IoT)和嵌入式系统的发展,将深度学习模型部署到嵌入式设备上变得越来越重要。这不仅可以实现实时数据处理,还能大幅降低数据传输的延迟和成本。本文将介绍如何使用Python将深度学习模型部署到嵌入式设备上,并提供详细的代码示例。 所需工具 Python 3.x
第8层:FC-SoftmaxCaffe AlexNet实现模型结构如下:模型创新点:1. 使用新的激活函数Relu在Relu被使用之前,广泛使用的激活函数是tanh,sigmodtanh:sigmod:(为什么要使用Relu)tanh sigmod这两个激活函数的问题:存在梯度弥散,模型收敛较慢的问题,且无法表征
者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer
目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer
三、Flask项目部署总结 本文详细介绍了如何通过WSGI方式部署一个基于TensorFlow图像识别的Flask项目。从安装和配置Anaconda环境,到编写和测试Flask应用,再到安装和配置WSGI服务器,我们覆盖了部署过程中的每一个步骤。这些步骤帮助确保你的Fla
长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。
移动端模型必须满足模型尺寸小、计算复杂度低、电池耗电量低、下发更新部署灵活等条件。模型压缩和加速是两个不同的话题,有时候压缩并不一定能带来加速的效果,有时候又是相辅相成的。压缩重点在于减少网络参数量,加速则侧重在降低计算复杂度、提升并行能力等。模型压缩和加速可以从多个角度来优化。总体来看,个人认为主要分为三个层次:1
TensorRT C# API 项目介绍:基于C#与TensorRT部署深度学习模型 1. 项目介绍 NVIDIA® TensorRT™ 是一款用于高性能深度学习推理的 SDK,包括深度学习推理优化器和运行时,可为推理应用程序提供低延迟和高吞吐量。基于 NVIDIA TensorRT
创建科学计算大模型部署任务 模型训练完成后,可以启动模型的部署操作。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,模型类型选择“科学计算大模型”,参考表1完成部署参数设置,启动模型部署。
深度神经网络:深度学习的模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络 (RNTN)、自动编码器 (AutoEncoder)、生成对抗网络
型”,参考表1完成部署参数设置,启动模型部署。 表1 NlP大模型部署参数说明 参数分类 部署参数 参数说明 部署配置 模型来源 选择“盘古大模型”。 模型类型 选择“NLP大模型”。 部署模型 选择需要进行部署的模型。 部署方式 云上部署:算法部署至平台提供的资源池中。 最大TOKEN长度
引言 随着深度学习模型在各个领域的广泛应用,模型的安全性和防御能力变得尤为重要。攻击者可能会利用模型的漏洞进行对抗性攻击,导致模型输出错误的结果。本文将介绍如何使用Python实现深度学习模型的安全与防御,并提供详细的代码示例。 所需工具 Python 3.x TensorFlow
查看科学计算大模型部署任务详情 部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看
型的深度学习模型有卷积神经网络( convolutional neural network)、DBN和堆栈自编码网络(stacked auto-encoder network)模型等,下面对这些模型进行描述。 卷积神经网络模型 在无监督预训练出现之前,训练深度神经网络通常非常困难