已找到以下 10000 条记录
  • 模型部署

    有点好奇,部署后的模型是如何收费的?

    作者: puduzhongsheng
    1136
    3
  • 查看科学计算大模型部署任务详情 - 盘古大模型 PanguLargeModels

    查看科学计算大模型部署任务详情 部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建科学计算大模型部署任务后,可以查看模型的部署状态。

  • 深度解析与学习应用-模型

    存量思维与外接大脑:模型树还体现了存量思维的理念,即重视知识的积累和沉淀。通过不断地学习和更新模型树,学习者可以不断地丰富自己的知识库。此外,模型树还可以作为“外接大脑”,帮助学习者存储和检索大量的知识信息,减轻大脑的负担。 在实际应用中,模型树可以帮助学习者更好地规划学习计划、整理学习笔记、

    作者: i-WIFI
    发表时间: 2024-11-30 14:00:41
    49
    0
  • 深度学习应用篇-元学习[14]:基于优化的元学习-MAML模型、LEO模型、Reptile模型

    深度学习应用篇-元学习[14]:基于优化的元学习-MAML模型、LEO模型、Reptile模型 1.Model-Agnostic Meta-Learning Model-Agnostic Meta-Learning (MAML): 与模型无关的元学习,可兼容于任何一种采用梯度下降算法的模型。

    作者: 汀丶
    发表时间: 2023-06-14 10:35:12
    27
    0
  • 使用Python实现深度学习模型:元学习模型无关优化(MAML)

    目录 元学习与MAML简介 MAML算法步骤 使用Python实现MAML 示例应用:手写数字识别 总结 1. 元学习与MAML简介 1.1 元学习学习是一种学习策略,旨在通过从多个任务中学习来提升模型在新任务上的快速适应能力。简单来说,元学习就是学习如何学习。 1.2

    作者: Echo_Wish
    发表时间: 2024-06-30 14:05:23
    3
    0
  • 使用Python实现深度学习模型:知识蒸馏与模型压缩

    需要减小模型的大小并降低其计算复杂度。知识蒸馏和模型压缩是两种常用的方法。 2. 知识蒸馏概述 知识蒸馏是一种通过将复杂模型(教师模型)的知识传递给简单模型(学生模型)的方法。教师模型通常是一个大型的预训练模型,而学生模型则是一个较小的模型。通过让学生模型学习教师模型的输出,可以在保持性能的同时减小模型的大小。

    作者: Echo_Wish
    发表时间: 2024-07-04 08:33:08
    76
    0
  • CatBoost模型部署与在线预测教程

    CatBoost是一个开源机器学习库,用于处理分类和回归任务。它特别适合处理具有大量类别特征的数据集。在这篇教程中,我们将学习如何部署一个CatBoost模型,并创建一个简单的Web服务来进行在线预测。 安装CatBoost 首先,确保你已经安装了CatBoost。你可以使用pip进行安装: pip

    作者: Echo_Wish
    发表时间: 2024-03-11 09:18:20
    9
    0
  • 模型训练 - 网络智能体

    模型训练 使用特征工程处理后生成的训练集进行模型训练。 创建联邦学习训练任务(简易编辑器) 单击简易编辑器界面右上角的“训练”。 进入“训练任务配置”界面,如图1所示。 图1 训练任务配置 参数说明,如表1所示。 表1 参数配置 区域 参数名称 参数描述 任务说明 任务名称 训练任务的名称。

  • 网站搭建与部署知识课程

    网站搭建与部署知识课程 完成网站建设课程学习,获得华为云官方微认证证书,获得更多职场机遇。 【人才就业推荐】携手华为云招聘,通过认证获得面试优先推荐。 网站建设课程学习 完成实名认证即可学习 电子商务网站搭建技能轻松掌握 互联网的快速发展催生了“网购”这一新兴的消费方式,现如今,

  • 深度学习中的Normalization模型

    很快被作为深度学习的标准工具应用在了各种场合。BN**虽然好,但是也存在一些局限和问题,诸如当BatchSize太小时效果不佳、对RNN等**络无法有效应用BN等。针对BN的问题,最近两年又陆续有基于BN思想的很多改进Normalization模型被提出。BN是深度学习进展中里程

    作者: 可爱又积极
    841
    3
  • 管理科学计算大模型部署任务 - 盘古大模型 PanguLargeModels

    管理科学计算大模型部署任务 模型更新 完成创建科学计算大模型部署任务后,可以替换已部署模型并升级配置,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击模型名称,进入模型详情页面。

  • 车道线模型部署

    请问华为MDC 300F ADSFI框架中车道线如何部署?有没有车道线基于OPENCV / 深度学习成功的案例参考?目前倾向于深度学习来做,还有车道线转换模型需要更改算子吗?转换后的.om文件一般包含什么可以说一说吗?

    作者: day day up
    131
    1
  • 智能运维新时代:机器学习模型部署与管理

    在现代运维工作中,机器学习模型的应用已成为提升效率和准确性的关键手段。然而,模型的成功开发仅仅是第一步,更为重要的是如何高效地部署和管理这些模型,使其在实际业务中发挥作用。本文将详细介绍机器学习模型部署和管理方法,帮助运维工程师应对这一复杂任务。 1. 部署准备 在部署机器学习模型之前,需要完成以下准备工作:

    作者: Echo_Wish
    发表时间: 2024-11-06 08:09:32
    181
    0
  • 分享深度学习算法——MetaHIN 模型

    ”问题,作者提出MetaHIN模型。MetaHIN在模型层面探索了元学习的能力,同时在数据层面研究了异质信息网络的表达能力。在MetaHIN中,作者提出使用多方面的语义上下文来增强每个用户的任务,因此设计了一种新颖的语义增强型任务构建器,用于在元学习场景中捕获异质信息网络中的语义

    作者: 初学者7000
    1737
    2
  • 将已有模型部署模型服务 - 应用平台 AppStage

    将已有模型部署模型服务 模型需要部署成功后才可正式提供模型服务。部署成功后,可以对模型服务进行模型调测,并支持在创建Agent时使用或通过模型调用接口调用。 本文介绍如何将微调后的模型或部分平台预置的模型部署模型服务。 前提条件 已购买推理单元资源,具体购买方法请参见购买AI原生应用引擎包年包月资源。

  • 深度学习模型族训练

    主导的过拟合。正则化的目标是使模型从第三种情况转化为第二种情况。在实践中,过于复杂的模型族不一定包括目标函数或真实数据生成过程,甚至也不包括近似过程。我们几乎从未知晓真实数据的生成过程,所以我们永远不知道被估计的模型族是否包括生成过程。然而,深度学习算法的大多数应用都是针对这样的

    作者: 小强鼓掌
    938
    3
  • 创建模型成功后,部署服务报错,如何排查代码问题 - AI开发平台ModelArts

    创建模型成功后,部署服务报错,如何排查代码问题 问题现象 创建模型成功后,部署服务失败,如何定位是模型代码编写有问题。 原因分析 用户自定义镜像或者通过基础镜像导入的模型时,用户自己编写了很多自定义的业务逻辑,这些逻辑有问题将会导致服务部署或者预测失败,需要能够排查出哪里有问题。

  • 使用Python实现深度学习模型模型监控与性能优化

    深度学习模型的实际应用中,模型的性能监控与优化是确保其稳定性和高效性的关键步骤。本文将介绍如何使用Python实现深度学习模型的监控与性能优化,涵盖数据准备、模型训练、监控工具和优化策略等内容。 目录 引言 模型监控概述 性能优化概述 实现步骤 数据准备 模型训练 模型监控

    作者: Echo_Wish
    发表时间: 2024-07-08 08:32:11
    97
    0
  • 部署NLP大模型 - 盘古大模型 PanguLargeModels

    部署NLP大模型 创建NLP大模型部署任务 查看NLP大模型部署任务详情 管理NLP大模型部署任务 父主题: 开发盘古NLP大模型

  • 部署CV大模型 - 盘古大模型 PanguLargeModels

    部署CV大模型 创建CV大模型部署任务 查看CV大模型部署任务详情 管理CV大模型部署任务 父主题: 开发盘古CV大模型