检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Standard模型部署 ModelArts Standard提供模型、服务管理能力,支持多厂商多框架多功能的镜像和模型统一纳管。 通常AI模型部署和规模化落地非常复杂。 例如,智慧交通项目中,在获得训练好的模型后,需要部署到云、边、端多种场景。如果在端侧部署,需要一次性部署到不同规格
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano
Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型
Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
自动学习中部署上线是将模型部署为什么类型的服务? 自动学习中部署上线是将模型部署为在线服务,您可以添加图片或代码进行服务测试,也可以使用URL接口调用。 部署成功后,您也可以在ModelArts管理控制台的“部署上线 > 在线服务”页面中,查看到正在运行的服务。您也可以在此页面停止服务或删除服务。
建模步骤 创建部署模型。 创建新的部署模型图或者在已有的部署模型图中进行画图设计,如果部署模型场景较多,可根据实际情况将内容进行拆分,按实际部署场景创建多个部署模型图。 建立交付元素与部署元素的部署关系。 从工具箱拖入部署元素创建到部署模型图中,描述部署场景,再将交付模型中定义的打包交付
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
如果提示未开通则根据提示跳转至开通页面完成服务开通。 进入“基础配置”页面,选择Python技术栈,CPU架构选择X86计算,CPU/内存选择2U4G,单击“下一步”。 进入“工程配置”页面,选择不创建工程,然后单击“确定”,完成实例创建。 安装TensorFlow 进入CodeArts IDE
部署模型的基础构造型与自定义构造型元素才认定为部署元素)。 在部署模型图上创建出来的部署元素; 引用到部署模型中的部署元素(包含关联空间中的引用的部署元素); 如何检查 查询部署模型图内元素类型为架构方案配置构造型的所有元素,查询基于模型图构出的部署模型架构树。 正确示例 每个部署元素都有连线关系和上下级关系(包含关系)。
型”,参考表1完成部署参数设置,启动模型部署。 表1 NlP大模型部署参数说明 参数分类 部署参数 参数说明 部署配置 模型来源 选择“盘古大模型”。 模型类型 选择“NLP大模型”。 部署模型 选择需要进行部署的模型。 部署方式 云上部署:算法部署至平台提供的资源池中。 最大TOKEN长度
plt.show() 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
查看NLP大模型部署任务详情 部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看模
管理NLP大模型部署任务 模型更新、修改部署 成功创建部署任务后,如需修改已部署的模型或配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型,但在修改部署时模型不可替换。 在“模型更新”或“修改部署”后进行升级操作时,可选择全量升级或滚动升级两种方式:
创建科学计算大模型部署任务 模型训练完成后,可以启动模型的部署操作。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,模型类型选择“科学计算大模型”,参考表1完成部署参数设置,启动模型部署。
查看科学计算大模型部署任务详情 部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看
池的物理池。 “选择模型及配置” “模型来源” 根据您的实际情况选择“自定义模型”或者“订阅模型”。 “选择模型及版本” 选择状态“正常”的模型及版本。 “分流” 设置当前实例节点的流量占比,服务调用请求根据该比例分配到当前版本上。 如您仅部署一个版本的模型,请设置为100%。如
将已有模型部署为模型服务 模型需要部署成功后才可正式提供模型服务。部署成功后,可以对模型服务进行模型调测,并支持在创建Agent时使用或通过模型调用接口调用。 本文介绍如何将微调后的模型或部分平台预置的模型部署为模型服务。 前提条件 已购买推理单元资源,具体购买方法请参见购买AI原生应用引擎包年包月资源。