检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano
配置时间模型 Flink中主要提供两种时间模型:Processing Time和Event Time。 DLI允许在创建Source Stream和Temp Stream的时候指定时间模型以便在后续计算中使用。 配置Processing Time Processing Time是
配置时间模型 Flink中主要提供两种时间模型:Processing Time和Event Time。 DLI允许在创建Source Stream和Temp Stream的时候指定时间模型以便在后续计算中使用。 配置Processing Time Processing Time是
距离计算方法,线性模型和非线性模型等。 我们采用一种基于随机森林的异常检测方法: One-pass算法,O(1)均摊时空复杂度。 随机森林结构仅构造一次,模型更新仅仅是节点数据分布值的更新。 节点存储多个窗口的数据分布信息,能够检测数据分布变化。 异常检测和模型更新在同一个代码框架中完成。
StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)
StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)
距离计算方法,线性模型和非线性模型等。 我们采用一种基于随机森林的异常检测方法: One-pass算法,O(1)均摊时空复杂度。 随机森林结构仅构造一次,模型更新仅仅是节点数据分布值的更新。 节点存储多个窗口的数据分布信息,能够检测数据分布变化。 异常检测和模型更新在同一个代码框架中完成。
即开即用,Serverless架构。 需要较强的技术能力进行搭建、配置、运维。 高可用 具有跨AZ容灾能力。 无 高易用 学习成本 学习成本低,包含10年、上千个项目经验固化的调优参数。同时提供可视化智能调优界面。 学习成本高,需要了解上百个调优参数。 支持数据源 云上:OBS、RD
指使用模型对未来的数据进行推测。DLI服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive Integrated Moving Average)是时间序列预测中的经典模型,和AR/MA/ARMA模型之间联系紧密。
指使用模型对未来的数据进行推测。DLI服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive Integrated Moving Average)是时间序列预测中的经典模型,和AR/MA/ARMA模型之间联系紧密。
版本号,当obs里的桶或对象有设置版本的时候需填写,否则不用配置该项。 注意事项 在创建Source Stream时可以指定时间模型以便在后续计算中使用,当前DLI支持Processing Time和Event Time两种时间模型,具体使用语法可以参考配置时间模型。 示例 从OBS的桶读取对象为input
版本号,当obs里的桶或对象有设置版本的时候需填写,否则不用配置该项。 注意事项 在创建Source Stream时可以指定时间模型以便在后续计算中使用,当前DLI支持Processing Time和Event Time两种时间模型,具体使用语法可以参考配置时间模型。 示例 从OBS的桶读取对象为input
操作(读取、插入、修改、删除) Doris 中存储的数据。详情可参考Flink Doris Connector 只能对Unique Key模型的表进行修改和删除操作。 表1 支持类别 类别 详情 支持表类型 源表、维表、结果表 父主题: Doris
Stream时可以指定时间模型以便在后续计算中使用,当前DLI支持Processing Time和Event Time两种时间模型,具体使用语法可以参考配置时间模型。 示例 从Kafka名称为test的topic中读取数据。 1 2 3 4 5 6 7 8 9 10
Stream时可以指定时间模型以便在后续计算中使用,当前DLI支持Processing Time和Event Time两种时间模型,具体使用语法可以参考配置时间模型。 示例 从Kafka名称为test的topic中读取数据。 1 2 3 4 5 6 7 8 9 10
和parquet时需配置,表明一个文件最多存储记录数,当达到最大值,则另起新文件。 dump_interval 否 触发周期, 当编码格式为orc或者配置了DIS通知提醒时需进行配置。 在orc编码方式中,该配置表示周期到达时,即使文件记录数未达到最大个数配置,也将文件上传到OBS上。
和parquet时需配置,表明一个文件最多存储记录数,当达到最大值,则另起新文件。 dump_interval 否 触发周期, 当编码格式为orc或者配置了DIS通知提醒时需进行配置。 在orc编码方式中,该配置表示周期到达时,即使文件记录数未达到最大个数配置,也将文件上传到OBS上。
可能导致的数据异常问题,请根据您的业务需求选择OBS桶类型。 HDFS代理用户配置 登录MRS管理页面。 选择MRS的HDFS Namenode配置,在“自定义”中添加配置参数。 图1 HDFS服务配置 其中,core-site值名称“hadoop.proxyuser.myname
可能导致的数据异常问题,请根据您的业务需求选择OBS桶类型。 HDFS代理用户配置 登录MRS管理页面。 选择MRS的HDFS Namenode配置,在“自定义”中添加配置参数。 图1 HDFS服务配置 其中,core-site值名称“hadoop.proxyuser.myname