检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
本地开发的模型需要上传到华为云OBS服务。 创建模型:把模型文件和推理文件导入到ModelArts的模型仓库中,进行版本化管理,并构建为可运行的模型。 部署服务:模型构建完成后,根据您的业务场景,选择将模型部署成对应的服务类型。 将模型部署为实时推理作业 将模型部署为一个Web
图3 模型评估报告 表1 评估结果参数说明 参数 说明 recall:召回率 被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.6。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.6。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
阅模型管理在“模型管理>云服务订阅模型”页面中。 模型来源不同。订阅模型,模型来源于AI Gallery;云服务订阅模型,模型来源于其他AI服务开发的模型。 订阅模型列表 在ModelArts的“模型管理>订阅模型”页面中,罗列了从AI Gallery订阅的所有模型。 订阅模型,可通过如下操作获得:
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.5。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
为Huggingface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 Step2 配置pod 在节点自定义目录${node_path}下创建config
--install-for-all 安装完成后再使用如下命令查看是否安装正确。 npu-smi info -t board -i 1 | egrep -i "software|firmware" 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision 精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy 准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910)
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.908)
模型配置文件编写说明 模型开发者发布模型时需要编写配置文件config.json。模型配置文件描述模型用途、模型计算框架、模型精度、推理代码依赖包以及模型对外API接口。 配置文件格式说明 配置文件为JSON格式,参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 描述
1:8080/${推理服务的请求路径} 推理部署示例 本节将详细说明以自定义引擎方式创建模型的步骤。 创建模型并查看模型详情 登录ModelArts管理控制台,进入“模型管理”页面中,单击“创建模型”,进入模型创建页面,设置相关参数如下: 元模型来源:选择“从对象存储服务(OBS)中选择”。 选择元模型:从OBS中选择一个模型包。
访问在线服务支持的传输协议 使用WebSocket协议的方式访问在线服务 使用Server-Sent Events协议的方式访问在线服务 父主题: 将模型部署为实时推理作业
访问在线服务支持的访问通道 通过公网访问通道的方式访问在线服务 通过VPC访问通道的方式访问在线服务 通过VPC高速访问通道的方式访问在线服务 父主题: 将模型部署为实时推理作业
下wheel包方式安装运行环境依赖。线下wheel包安装,需确保wheel包与模型文件放在同一目录。 优化模型代码,提高构建模型镜像的编译效率。 父主题: 模型管理
在ModelArts自动学习中模型训练图片异常怎么办? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明
自定义镜像导入模型部署上线调用API报错 部署上线调用API报错,排查项如下: 确认配置文件模型的接口定义中有没有POST方法。 确认配置文件里url是否有定义路径。例如:“/predictions/poetry”(默认为“/”)。 确认API调用中body体中的调用路径是否拼接