检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
全计算。 多方联邦训练 对接主流深度学习框架实现横向和纵向联邦建模,支持基于SMPC(如不经意传输、同态加密等)的多方样本对齐和训练模型保护。 云端容器化部署 参与方数据源计算节点云原生容器部署,聚合计算节点动态扩容,支持云、边缘、HCSO多种部署模式。 可视化数据监管 为数据参
空间成员完成计算节点部署,配置参数时选择挂载方式和数据目录,参考部署计算节点。 空间成员在计算节点中完成数据发布,参考发布数据。 参与方的计算节点如果是采用云租户部署,并且使用子账号进行创建的,需要参考配置CCE集群子账号权限。 约束限制 避免作业名重复。 必须选择一个已有模型才能创建批量预测作业。
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
测试步骤 数据准备 训练型横向联邦作业流程 评估型横向联邦作业流程 父主题: 横向联邦学习场景
实验结果 乳腺癌数据集作业结果 父主题: 横向联邦学习场景
可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图,提供插件化的区块链对接存储,实现使用过程的可审计、可追溯。 容器化部署 容器化的多方
learning_rate 否 Float 学习率,最小值0,最大值1 batch_size 否 Integer 批大小,最小值1 epoch 否 Integer 迭代次数,最小值1 tree_num 否 Integer 树数量,最小值1 tree_depth 否 Integer 树深度,最小值1 split_num
建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。 基于多方安全计算功能准备好合适的数据,本文主要介绍双方对已有的数据进行样本对齐、特征筛选和联邦建模,并对产生的模型进行评估。 父主题: 使用TICS可信联邦学习进行联邦建模
会造成训练资源的浪费,过高的iv值又过于突出可能会过度影响训练出来的模型。 例如这里大数据厂商提供的f4特征iv值是0,说明这个特征对于标签的识别没有区分度,可以不选用;而f0、f2特征的iv值中等,适合作为模型的训练特征。 根据计算得出的iv值,企业A调整了训练使用的特征,没有
边缘节点部署模式下创建节点,该如何配置资源分配策略? 使用场景 购买计算节点页面,选择边缘部署模式。 操作步骤 进入购买计算节点页面。 部署配置选择边缘节点部署。 云租户部署模式下,TICS服务可以按照选取的规格,为客户预置默认资源分配策略。 边缘节点部署模式下,使用的纳管节点为
f6d964d274" } 状态码 状态码 描述 200 执行样本对齐作业成功 401 操作无权限 500 内部服务器错误 父主题: 联邦学习作业管理
开任务详情,可以查看更详细的计算过程信息。 图7 作业计算过程信息详情(截图为多方安全计算作业示例,请以实际作业为准) 父主题: 可信联邦学习作业
"result_ext" : null } 状态码 状态码 描述 200 查询样本对齐结果成功 401 操作无权限 500 内部服务器错误 父主题: 联邦学习作业管理
(联邦分析和联邦机器学习),需要部署计算节点,接入己方数据,作为可信计算服务的输入,通过执行联邦分析和联邦机器学习作业后,最终拿到结果。 计算节点以容器的形式部署,支持云租户部署和边缘节点部署,用户可根据数据源的现状,采用合适的计算节点部署方案。 云租户部署:基于云容器引擎(CCE,Cloud
d964d274" } 状态码 状态码 描述 200 执行ID选取截断作业成功 401 操作无权限 500 内部服务器错误 父主题: 联邦学习作业管理
reason”报错信息。 问题分析 该报错大概率是资源配额不足导致作业执行失败。 解决方案 如果是纵向联邦学习作业,您可以在该纵向联邦作业详情页面尝试新增内存配额和CPU配额,然后重新执行作业。 如果是横向联邦学习作业,您可以在该横向联邦作业详情页面尝试新增内存配额和CPU配额,然后保存、提交审批,等待审批通过后再重新执行作业。
"result_ext" : "" } 状态码 状态码 描述 200 查询执行结果成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理
择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
的前提下,通过多方联合建模,金融机构补充了风控模型特征维度,提升模型准确率。 优势: 提升模型准确率 多方机构实现算法层面联合建模,提升了需求方模型的预测效果。 数据隐私保护强 多方采用隐私集合求交PSI对齐样本数据,本地数据或模型加密后在安全环境中运算,实现数据可用不可得。精细
首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模