应用部署异常时,支持卸载或部署当前应用。 应用部署时长受应用下租户数量/数据模型数量的影响。为避免应用部署时间过长,根据不同的使用场景,已对应用的租户数量和数据模型数量进行了相应的限制。在标准使用场景下,建议单个应用的实体模型小于400个,扩展表小于1200个,租户数量小于40个。
py --base-path 大模型权重地址 --draft-path 小模型权重地址 --base-weight-name 大模型包含lm_head的权重文件名 --draft-weight-name 小模型权重文件名 具体可参考Eagle投机小模型训练章节中的步骤五:训练生成权重转换成可以支持vLLM推理的格式。
较大的模型(如qwen系模型),开启并行可以减少显存占用,以提升推理吞吐量。 export USE_PFA_HIGH_PRECISION_MODE=1 # PFA算子是否使用高精度模式;默认值为0表示不开启。针对Qwen2-7B模型和Qwen2-57b模型,必须开启此配置,否则
再进行单独计费。由专属资源池进行收费。 Standard中模型部署为服务后如何收费? ModelArts支持将模型按照业务需求部署为服务。训练类型不同,部署后的计费方式不同。 将模型部署为服务时,根据数据集大小评估模型的计算节点个数,根据实际编码情况选择计算模式。 具体计费方式请参见ModelArts产品价格详情。
访问容器镜像服务控制台,按下图所示,单击“镜像名称”进入镜像详情页,获取镜像地址(一键部署(制作镜像)模板部署完成后约10分钟,镜像制作完成)仅复制镜像地址不需要docker pull 命令。 图1 容器镜像服务 图2 获取镜像地址 部署模型 进入函数工作流控制台选择此方案创建的函数,单击函数名称进入函数主页。
去噪处理:去除无关或异常值,减少对模型训练的干扰。 数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型。 模型训练:使用处理后的数据集训练模型。 超参数调优
在ModelArts中部署模型时,为什么无法选择Ascend Snt3资源? 由于Ascend Snt3资源有限,当资源售罄后,您在部署上线时,无法选择Ascend Snt3资源(公共资源池)进行推理,即在部署页面中,“Ascend: 1* Snt3 (8GB) | ARM: 3
USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下: --host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号
服务部署 自定义镜像模型部署为在线服务时出现异常 部署的在线服务状态为告警 服务启动失败 服务部署、启动、升级和修改时,拉取镜像失败如何处理? 服务部署、启动、升级和修改时,镜像不断重启如何处理? 服务部署、启动、升级和修改时,容器健康检查失败如何处理? 服务部署、启动、升级和修改时,资源不足如何处理?
发布微调后的模型 微调任务执行完成后,可以将微调后的模型部署为模型服务,模型部署后才能进行模型调测以及在创建Agent时调用。 在模型微调流水线任务列表中,单击操作列的“发布”,当任务状态显示为“已发布”,表示模型部署完成。如果部署失败,任务状态显示为“发布失败”,您可以检查配置后重新发布。
如果权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2
若权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的
登录ModelArts管理控制台,在左侧导航栏中选择“模型部署 > 在线服务”,默认进入“在线服务”列表。 单击目标服务名称,进入服务详情页面。 在“在线服务”的详情页面,可以获取该服务的调用地址和输入参数信息。 “API接口公网地址”即在线服务的调用地址。当模型配置文件中apis定义了路径,调用地址
通过API接口查询模型详情,model_name返回值出现乱码 问题现象 通过API接口查询模型详情,model_name返回值出现乱码。例如model_name为query_vec_recall_model,但是api接口返回结果是query_vec_recall_model_b。
如果权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2
如果权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2
通过Token认证的方式访问在线服务 如果在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。在集成至生产环境之前,需要对此API进行调测,您可以使用以下方式向在线服务发起预测请求: 方
DeepSeek模型基于ModelArts Lite Server适配MindIE推理部署指导 方案概述 准备权重 部署推理服务 附录:rank_table_file.json文件 附录:config.json文件 附录:部署常见问题 父主题: DeepSeek系列模型推理
若权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的
推理服务部署 准备推理环境 启动推理服务 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912)
您即将访问非华为云网站,请注意账号财产安全